双端键合复合结构被动调Q微型测距用激光器

Double-end bonded composite structure passively Q-switched micro ranging laser

  • 摘要: 报道了一种双端键合复合结构被动调Q人眼安全微型测距用激光器。实验将Er3+/Yb3+:glass和F2 glass以及被动调Q晶体Co2+:MgAl2O4三种材料进行光学热复合,构成双端键合复合结构。实验对比了双端键合复合结构和非复合结构激光器的输出特性,前者的激光性能参数均大幅优于后者。其中双端键合复合结构实现了重复频率10 Hz,单脉冲能量330 J、脉冲宽度5.5 ns,光束质量为1.4的人眼安全激光输出;而非复合结构激光器的单脉冲能量为245 J、脉冲宽度6.5 ns,光束质量为1.9。对双端键合复合结构增益介质和单块Er3+/Yb3+:glass进行热模拟,前者的热焦距相对于后者增长了51.2%,双端键合复合结构热效应明显改善。综合表明双端键合复合技术可以降低增益介质内部温度梯度,使热焦距变长,模体积增加,振荡光与泵浦光的模式匹配度提高,单脉冲能量增加。

     

    Abstract: A passively Q-switched human-eye safety micro-ranging laser with a double-end bonded composite structure was reported. The double-end bonded structure was formed by the heterogeneous material composite technology, including the gain medium Er3+/Yb3+:glass, F2 glass and passively Q-switched crystal Co2+:MgAl2O4. The output characteristics of the double-bonded composite structure and the non-composite structure were compared in the experiment. The former laser performance parameters are significantly better than the latter. The double-bonded composite structure achieved a human eye-safe laser output of pulse energy 330 J, beam quality 1.4, pulse width 5.5 ns with 10 Hz repetition frequency; the non-composite structure laser had a single pulse energy 245 J, pulse width 6.5 ns, and the beam quality 1.9. The thermal simulation of double-bonded composite structure gain media and monolithic Er3+/Yb3+:glass shows that the former has a 51.2% increase in thermal focal length relative to the latter, and the thermal effect of the double-bonded composite structure is significantly improved. The above shows that the double-bonded composite technology can reduce the temperature gradient inside the gain medium, make the thermal focal length longer, increase the volume of the mold, and improve the mode matching of the oscillating light and the pump light, so that the single pulse energy is increased.

     

/

返回文章
返回