Abstract:
When a tail-leading Airy beam and a tail-trailing Airy beam with the same amplitude parallelly propagate in a Kerr medium, the evolution of shedding solitons was numerically investigated based on the split-step Fourier method. Moreover, the effect of high-order effects on rewinding solitons was further studied. It is demonstrated that rewinding solitons with the similar structure of DNA will be generated due to the interaction of a tail-leading Airy beam and a tail-trailing Airy beam. By adjusting the initial input amplitude and space interval, the characteristics of rewinding solitons can be influenced. Furthermore, considering single high-order effect (third-order dispersion, Raman, self-steeping) or multiple high-order effects, a great influence on the evolution of rewinding solitons will generate in the temporal and spectral domain. The results can provide some theoretical basis for manipulating rewinding solitons of a Airy beam, and also have potential application prospects in the generation of supercontinuum spectrum and the broadband light source.