融合光电扫描定位的大构件整体形貌测量方法

An overall shape measurement method for large components based on fusion of the optic-electrical scanning and positioning

  • 摘要: 针对航空、航天、船舶等制造领域大构件形貌测量的大量程、高数据密度、高效率、结构复杂等特点,研究了一种融合光电扫描全局定位和终端形貌测量技术的大构件高分辨率几何形貌整体测量方法。通过条纹投影摄影测量系统在构件局部表面投射相位条纹,获取高精度稠密点云,设计了位姿测量算法,解决了复杂现场不满足交会条件时无法实现位姿测量的问题,在室内空间测量定位系统(workshop Measurement Positioning System,wMPS)组建的全局测量网络体系中,对条纹投影摄影测量系统进行全局定位。从而在不依赖软件拼接算法的情况下,通过数据融合完成了大构件整体形貌测量。实验结果表明:该系统的点云密度为50点/mm2,整体测量精度可达0.22 mm。

     

    Abstract: Aiming at the characteristics of large-scale, high-resolution, high-efficiency, complex structure of large component shape measurement in aerospace and marine manufacturing filed, a method for measuring the high-resolution geometric shape of large components was proposed, based on the optic-electrical scanning and positioning theory combined terminal shape measurement technology. The fringe projection photogrammetry system was used to project phase fringes on the local surface of the component to obtain high-precision dense point cloud, the pose measurement algorithm was designed to solve the problem that the pose measurement cannot be realized when the complex scene does not meet the intersection condition, the position of fringe projection photogrammetry system in the global measurement network system established by the workshop measurement positioning system(wMPS) can be measured. Therefore, the overall shape measurement of large components was completed through data fusion without relying on the software splicing algorithm. The experimental results show that the point cloud density of the system is 50 points/mm2, and the overall measurement accuracy of the system can reach 0.22 mm.

     

/

返回文章
返回