微环谐振器中各参数对光速控制输出脉冲畸变的影响仿真分析

Simulation analysis of the influence of various parameters on output pulse distortion of group velocity control in microring resonator

  • 摘要: 利用微环谐振器进行光速控制时,各参数对光脉冲传输的影响是不可忽略的,它除了导致光脉冲展宽,还引起脉冲的畸变。基于微环谐振器的传输特性,推导了单环谐振器的二阶色散和三阶色散表达式,针对无损耗/增益情形,分析了利用微环谐振器进行光速控制时,高阶色散和输入脉冲中心波长对输出脉冲畸变的影响,分析了损耗/增益对单环谐振器输出脉冲畸变的影响。结果表明,二阶色散导致脉冲展宽,三阶色散导致脉冲畸变,输入脉冲中心波长位置影响脉冲分裂谷底的深浅,而损耗和增益影响脉冲畸变情况。为利用微环谐振器实现光速控制的应用提供了设计优化依据。

     

    Abstract: When using microring resonators to realize group velocity control, the influences of various parameters on optical pulse transmission cannot be neglected. The parameters lead to the pulse broadening and the pulse distortion. The expressions of the second-order and third-order dispersions in single ring resonator were derived based on the transmission characteristics of the microring resonator. Aiming at the resonator without loss/gain, the pulse distortions resulted from the higher-order dispersions and the input pulse center wavelength were analyzed, during using microring resonator to realize the control of the group velocity. In addition, the influence of loss/gain on output pulse distortion of single ring resonator was derived. The results show that the second-order dispersion leads to pulse broadening and the third-order dispersion is accounted for the pulse distortion and the position of the central wavelength of the input pulse affects the depth of the pulse splitting bottom while the loss and gain affect the pulse distortion. This work provides design basis for applications of microring resonators in group velocity control.

     

/

返回文章
返回