Abstract:
To verify the feasibility of tracking moving targets of micro-nano satellite using reaction wheel as actuator to adjust attitude, the physical simulation system of micro-nano satellite photoelectric tracking based on single-axis air-bearing platform was designed. Firstly, in order to improve the accuracy of physical simulation system, the disturbance torques of reaction wheel and air-bearing platform were analyzed separately; Secondly, aiming at disturbance torques and asymmetry of acceleration and deceleration time constants of reaction wheel itself, a flywheel control strategy combining gain scheduling and moment compensation was designed; Then, the tracking control system of analog micro-nano satellite was designed by using double closed-loop with velocity-forward control structure; Finally, in order to test the tracking performance of the simulation system, the tracking experiment of one-dimensional target with sinusoidal motion was completed. The experiment shows that the tracking accuracy reaches 0.4 for sinusoidal moving targets with maximum velocity of 9 ()/s and maximum acceleration of 4.5 ()/s2, which demonstrates that the micro-nano satellite using reaction wheel as actuator can track moving targets by attitude maneuver.