Abstract:
Antimonene was prepared through liquid phase exfoliation of bulk materials. The as-prepared sample was characterized by scanning electron microscope (SEM), ultraviolet-visible (UV-vis) absorption spectroscopy, and Raman scattering spectroscopy in details. Broad absorption from ultraviolet to visible region was observed in the UV-vis absorption spectra. Two typical peaks assigned to Sb were detected in Raman spectra. A flat typical structure corresponding to two-dimensional materials was observed in microscopic characterization. Then Z-scan technique was utilized to test the third-order nonlinear optical properties of the sample. The as-prepared antimonene exhibited saturation absorption when excited by a laser source with pulse width of 4 ns and wavelength of 532 nm. The nonlinear absorption coefficient was -7.8610-11 m/W. Upon electron irradiation, antimonene was successfully transformed into optical limiting materials, which exhibited reverse saturable absorption with a nonlinear absorption coefficient of 8.6910-11 m/W.