集成双热电致冷器超长线列InGaAs组件封装技术

Packaging for Long Linear InGaAs FPA with two thermoelectric coolings

  • 摘要: 为了实现大视场、高空间分辨率、高光谱分辨率的指标要求,通常采用多模块拼接的技术方案,实现超长线列的组件。通过两个热电致冷器的拼接实现120 mm长度的大冷面,通过多个模块拼接实现4 000元长线列InGaAs短波红外探测器组件的封装。同时针对超长线列温度均匀性实现、拼接焦平面的共面性、拼接的工程可靠性开展研究,通过热电致冷器的拼接、热分析、冷板材料的选择、零件公差控制及微调节等技术手段,在工程上实现了超大冷面的温度均匀性控制在0.4℃以内;焦平面的共面性控制在0.020 mm以内。封装的超长线列InGaAs短波红外组件通过了冲击和随机振动实验,实验前后焦平面的共面性无明显变化,实现了清晰的地面成像。

     

    Abstract: In order to realize large scale, high spatial resolution and high spectral resolution, mechanical assembly technology was usually adopted to realize Long Linear assembly. The large cold plate of 120 mm was achieved through the mechanical assembly technology of two thermoelectric coolings. Packaging of Long Linear InGaA s focal plane array assembly with 4 000 pixels was adoped through the mechanical assembly technology. Temperature uniformity distribution of the Long Linear, the coplanar error of FPAs, and the engineering reliability of the assembly were studied. The temperature uniformity was controlled at 0.4℃, the focal plane array coplanar error was controlled inside 0.020 mm by mechanical assembly of thermoelectronic coolings, thermal analysis, selection of coolings material, tolerance control of component and micro regulation etc. The Long Linear InGaAs focal plane array shortwave infrared assembly had passed the impact and random vibration test, the focal plane array coplanar error was nearly unchanged. At last, a clear ground-imaging in the camera was abtained.

     

/

返回文章
返回