Abstract:
The evolution characteristics of an Airy beam in PT symmetric medium by using split-step Fourier method was investigated. Then the impact of truncation width, modulation depth, and modulation width on the propagation properties of soliton generated from an Airy beam was discussed in detail. The results illustrate that when an Airy beam propagates in a PT symmetric medium, a soliton with periodic variation is shedded at the main peak position and a lateral offset is generated. Moreover, it is demonstrated that with decreasing truncation width
a, increasing modulation depth
P and modulation factor w, the peak-to-average power ratio of a soliton from Airy beam increases, which causes the beam interference and beam distortion become more and more. With decrement of modulation depth
P and increment of modulation factor
w, the peak intensity and peak-to-average power ratio of a soliton from an Airy beam jump obviously, leading to decreasing propagation stability of a soliton. However, the shedding soliton can still propagates stably in a long distance.