碲镉汞焦平面阵列无效像元(盲元)特征与成因

Characteristics and causes of non-effective pixels of HgCdTe FPA

  • 摘要: 中波或长波红外焦平面阵列有效像元率递减的变化趋势,必然是由制造工艺缺陷、特定的工作应力或环境应力引起的某种机理造成。根据红外探测器输出信号电压的数学模型,通过信号传输分析、性能评价测试数据统计分析,运用统计图形、响应曲线及输出信号电压灰度图等可视化手段,直观地呈现无效像元的类型、数量、位置、分布,以及像元信号电压、噪声电压和响应电压等无效像元特性。统计分析显示,像元中心距15 μm的中波320×256探测器杜瓦制冷机组件,在使用过程中平均表观有效像元率相对于初始有效像元率减小1.07个百分点,平均有86.45%的表观无效像元为不稳定的闪元和漂移像元,设计和制造缺陷导致使用无效像元的响应直线呈水平状、响应电压趋于0,热适配引起的应力是造成线状分布使用无效像元簇的原因。提出用不同黑体温度条件下像元信号电压超出平均值±(6%~7.5%)的判别准则筛选识别无效像元的方法。

     

    Abstract: The reduced trend of operable pixel factor of medium wave or long wave infrared focal plane array must be resulted from some failure mechanism caused by manufacturing process defects, specific working stress or environmental stress. Mathematical model based on the output signal voltage of infrared detector, through the analysis of signal transmission and the statistical analysis of performance evaluation test data, visualization means such as statistical graphs, response curves and output signal voltage grayscale were used to visually express non-effective pixel characteristics, such as the types, number, locations, distribution, and output signal voltage, noise voltage, response voltage. Statistical analysis shows that the average apparent operable pixel factor is reduced by 1.07 percentage points relative to the initial operable pixel factor during use of the medium wave 320×250 detector Dewar cooler assembly of pixel pitch 15 μm, 86.45% of apparent non-effective pixels are unstable flickering pixels and drifting pixels on average. Design and manufacturing defects cause the response line of non-effective pixels to be horizontal, and the response voltage tends to 0. The thermal adaptation stress is the reason for non-effective pixel clusters of linear. A method was proposed to screen and identify non-effective pixels based on the criterion that the pixel signal voltage exceeded the average value of ±(6%~7.5%) under different blackbody temperatures.

     

/

返回文章
返回