基于连续投影算法提取特征波长的空中目标参考光谱选取

Air target reference spectrum selection based on characteristic wavelengths extracted by successive projections algorithm

  • 摘要: 空中目标在相对稳定的状态下具有确定的光谱辐射特性,因而可以利用光谱达到识别其型号的目的。首先,通过建立空中目标光谱辐射特性计算模型,获得了其归一化光谱辐射亮度数据。然后,利用连续投影算法对光谱进行特征波长提取,在保留一定精度的同时有效减少了所需数据量。最后,使用区分能力更强的混合光谱相似性测度SID (TAN)匹配光谱,研究在3~5 μm波段和8~14 μm波段两个大气窗口内,光谱辐射特性在不同飞行高度和飞行时间下的变化规律。结果表明:飞行高度对光谱辐射特性的影响大于飞行时间;3~5 μm波段的变化较8~14 μm波段明显。因此在建立光谱数据库时,为了提高识别的准确率,相对于8~14 μm波段,3~5 μm波段更需要考虑不同因素对光谱辐射特性的影响;相对于飞行时间,应尽可能多地选取不同飞行高度下的光谱作为参考光谱。

     

    Abstract: Possessing certain spectral radiation characteristics in a relatively stable state, the air target can be identified according to its spectrum. At first, with the simulation model of air target spectral radiation, the spectral radiance was calculated. Secondly, successive projections algorithm was applied to extract the characteristic wavelengths from the simulation spectral data to reduce required data while retaining a certain accuracy. At last, the hybrid spectral similarity measure named SID (TAN) was involved in comparing the spectral radiation characteristics of different flying heights and flying time in 3-5 μm band and 8-14 μm band called dual atmospheric windows due to its stronger discrimination capability. The result shows that flying heights exert a greater effect on target spectral radiation characteristics than flying time. Meanwhile, changes in 3-5 μm band are more obvious than in 8-14 μm band. Therefore, aiming to improve the recognition accuracy, more factors are supposed to be considered in 3-5 μm band than in 8-14 μm. Compared with flying time, it is recommended to select more spectra of various flying heights as reference spectrum.

     

/

返回文章
返回