脉冲激光辐照太阳能电池响应及光电转化影响

Response of pulse laser irradition solar cell and effect of photoelectric conversion

  • 摘要: 基于建立的单结GaAs太阳能电池激光辐照热传导模型和光电转换物理模型,对单结GaAs太阳能电池的脉冲激光辐照温度及光电转化影响进行了仿真模拟研究,分别研究了532 nm和808 nm两种不同波长的脉冲激光在不同辐照能量及入射角度下,太阳能电池温度、伏安特性、光电转换效率等性能变化,仿真结果表明,入射激光与太阳能电池法向之间夹角越小,太阳能电池输出电功率越大,在相同的激光辐照强度下,532 nm和808 nm波长激光对GaAs电池辐照导致的温度影响差别不大,808 nm波长激光比532 nm波长激光对于GaAs材料来说具有更大的吸收系数,太阳能电池能够吸收更多的能量,从而具有更高的响应,808 nm波长激光辐照单结GaAs电池能够输出更大的电功率以及带来更大的光电转换效率。

     

    Abstract: Based on the established laser thermal conduction model and photoelectric conversion physical model of single-junction GaAs solar cells, the effects of pulse laser irradiation temperature and photoelectric conversion on single-junction GaAs solar cells were simulated and studied. Two different types, 532 nm and 808 nm, were studied. Under different irradiation energy and incident angle, the solar cell temperature, voltage-current characteristics, photoelectric conversion efficiency and other properties were changed by the pulsed laser with different wavelengths. The simulation results show that the smaller the angle between the incident laser and the normal direction of the solar cell, the greater the electric power of the solar cell output under the same laser irradiation intensity, 532 nm and 808 nm wavelength lasers have little difference in temperature caused by GaAs battery irradiation. 808 nm wavelength laser has a larger absorption coefficient for GaAs materials than 532 nm wavelength laser. Solar cells can absorb more energy and have a higher response. Single-junction GaAs cells irradiated with 808 nm wavelength laser can output more electrical power and bring greater photoelectric conversion efficiency.

     

/

返回文章
返回