Abstract:
Core-shell semiconductor quantum dots materials are being investigated due to their special performance in repairing surface defects for the single quantum dots and greatly improving the optical performance of quantum dots. Instead of a traditional small flask as a reaction vessel to prepare NaHTe, the preparation of the CdTe core using a three-necked flask was achieved. 10 CdTe/CdS and CdTe/ZnS core-shell semiconductor quantum dots with different core sizes, shell thicknesses and shell materials were synthesized. The UV–visible absorption and fluorescence spectrum of 10 kinds of core-shell semiconductor quantum dots materials were measured and analyzed. The absorption spectrum of quantum dots in the UV-visible band shows that with the increase of quantum dots size, the absorption peak is red-shifted. The CdTe/CdS quantum dots differ in fluorescence lifetime and intensity due to the conversion of different core and shell sizes of quantum dots between types I and II. When the shell thickness of CdTe/ZnS increases, the shell thickness of ZnS reduces the number of dangling bonds and defect states on the core surface, which increases the probability of electron-hole pairs recombination and causes the fluorescence peak red-shift.