Abstract:
Retinal optical coherence tomography (OCT) technology uses external low coherence light source to irradiate the fundus of the human eye, and interfere scattered signals of the fundus of the human eye to obtain the sectional image information of the human retina, so as to realize the non-invasive, real-time and in vivo optical biopsy of the human retina. The axial resolution of traditional optical coherence tomography in retinal imaging can reach more than 3 μm, but the transverse resolution of OCT can only reach about 15-20 μm due to individual differences and inevitable aberrations. Adaptive optics, as an advanced technology of wavefront correction, can correct OCT chromatic aberration and aberrations caused by limited field of view and eye movement, so as to improve the transverse resolution of OCT to less than 2 μm. Adaptive optics OCT can realize near diffraction limit imaging of retinal cells and microvessels to timely detect the early lesions in patients with fundus. Based on the introduction of the technical characteristics of adaptive optics and retinal optical coherence tomography, the development status of adaptive optics in retinal optical coherence tomography at home and abroad was reviewed, and the key technologies and future development trends of adaptive optics OCT retinal high-resolution imaging in wide-band light source chromatic aberration correction, eye movement artifact reduction, adaptive optics field of view expansion and wavefront sensing and correction system simplification were summarized, so as to realize high-speed retinal imaging with large field of view, high efficiency, high sensitivity and high resolution, and provide reference for the future research and application of adaptive optics OCT retinal imaging technology.