夏盛强, 蔡继兴, 张潇允, 辛潮, 李婧祎, 金光勇. 毫秒-纳秒组合脉冲激光辐照熔石英的温度场应力场数值分析[J]. 红外与激光工程, 2021, 50(S2): 20200415. DOI: 10.3788/IRLA20200415
引用本文: 夏盛强, 蔡继兴, 张潇允, 辛潮, 李婧祎, 金光勇. 毫秒-纳秒组合脉冲激光辐照熔石英的温度场应力场数值分析[J]. 红外与激光工程, 2021, 50(S2): 20200415. DOI: 10.3788/IRLA20200415
Xia Shengqiang, Cai Jixing, Zhang Xiaoyun, Xin Chao, Li Jingyi, Jin Guangyong. Numerical analysis of temperature field and stress field of fused silica irradiated by millisecond-nanosecond combined pulse laser[J]. Infrared and Laser Engineering, 2021, 50(S2): 20200415. DOI: 10.3788/IRLA20200415
Citation: Xia Shengqiang, Cai Jixing, Zhang Xiaoyun, Xin Chao, Li Jingyi, Jin Guangyong. Numerical analysis of temperature field and stress field of fused silica irradiated by millisecond-nanosecond combined pulse laser[J]. Infrared and Laser Engineering, 2021, 50(S2): 20200415. DOI: 10.3788/IRLA20200415

毫秒-纳秒组合脉冲激光辐照熔石英的温度场应力场数值分析

Numerical analysis of temperature field and stress field of fused silica irradiated by millisecond-nanosecond combined pulse laser

  • 摘要: 为了研究毫秒-纳秒组合脉冲激光辐照熔石英的温度场和应力场特征,基于热传导理论和弹塑性力学理论建立了二维轴对称几何模型,利用有限元分析软件对毫秒-纳秒组合脉冲激光辐照熔石英的过程进行了数值分析,得到了熔石英表面及内部的瞬态温度场和应力场的时空分布与变化规律。结果表明:组合脉冲激光中,毫秒激光脉宽为1 ms、能量为120 J,纳秒激光脉宽为10 ns、能量为80 mJ,Δt=1.0 ms条件下毫秒-纳秒组合脉冲激光辐照熔石英出现温度最佳延时。观察总能量相同的组合脉冲激光与毫秒脉冲激光致熔石英的热损伤结果,得到最佳能量配比。研究结果表明,组合脉冲激光中,毫秒脉冲激光对熔石英产生热效应,纳秒脉冲激光对熔石英产生应力效应。

     

    Abstract: In order to study the characteristics of temperature field and stress field of fused silica irradiated by millisecond-nanosecond combined pulse laser, based on the theory of heat conduction and elastic-plastic mechanics, two dimensional axisymmetric geometric model was established, the numerical simulation software was used to analyze the process that fused silica irradiated by millisecond-nanosecond combined pulse laser. The temporal and spatial distribution and variation of the transient temperature field and stress field on the surface and inside of fused silica were obtained. The result shows, in the combined pulse laser, the millisecond pulse width is 1 ms, the energy is 120 J, the nanosecond laser pulse width is 10 ns, the energy is 80 mJ, Δt=1.0 ms, the best time delay for the temperature of fused silica irradiated by millisecond-nanosecond combined pulse laser, according to the different energy ratio of millisecond and nanosecond, the thermal effect of millisecond pulse laser on fused quartz and the stress effect of nanosecond pulse laser on fused quartz are obtained.

     

/

返回文章
返回