黄邵祺, 宋泽园, 潘明亮, 龙严, 戴博, 张大伟. 高填充因子微透镜阵列的快速制备及特性分析[J]. 红外与激光工程, 2021, 50(10): 20200476. DOI: 10.3788/IRLA20200476
引用本文: 黄邵祺, 宋泽园, 潘明亮, 龙严, 戴博, 张大伟. 高填充因子微透镜阵列的快速制备及特性分析[J]. 红外与激光工程, 2021, 50(10): 20200476. DOI: 10.3788/IRLA20200476
Huang Shaoqi, Song Zeyuan, Pan Mingliang, Long Yan, Dai Bo, Zhang Dawei. Rapid fabrication and characteristics analysis of high-filling-factor microlens array[J]. Infrared and Laser Engineering, 2021, 50(10): 20200476. DOI: 10.3788/IRLA20200476
Citation: Huang Shaoqi, Song Zeyuan, Pan Mingliang, Long Yan, Dai Bo, Zhang Dawei. Rapid fabrication and characteristics analysis of high-filling-factor microlens array[J]. Infrared and Laser Engineering, 2021, 50(10): 20200476. DOI: 10.3788/IRLA20200476

高填充因子微透镜阵列的快速制备及特性分析

Rapid fabrication and characteristics analysis of high-filling-factor microlens array

  • 摘要: 微透镜阵列是一种被广泛应用于光信息处理、光传感、光计算、光通信和高灵敏度成像等领域的精密光学元器件之一。通过一些先进的制造技术已经可以制造出不同几何形状、轮廓和光学特性的微透镜阵列。然而,由于三维微制造工艺的难度,使得高填充因子微透镜阵列中的微透镜很难实现紧密排列。提出了一种快速、低成本的微流体操纵技术,用于制备高填充因子微透镜阵列,且对其制备工艺进行了初步的演示。这种易于操作的制造技术适用于微透镜阵列的大批量生产,极大地提高了生产效率。通过预先制备出的三种不同尺寸(微柱直径分别为300、500、700 μm)的微柱,实现了与其对应不同形状和尺寸的微透镜阵列的制备,并搭建了一套光学成像系统以对这些微透镜阵列进行成像性能的评估。主要对微透镜阵列的焦距、成像精度和每个微透镜阵列中各个微透镜子单元成像的均一性进行测试,利用所提出的微流体操控技术制备的微透镜阵列具有良好的成像性能,有望能够被应用到三维成像、光均匀化等诸多应用中。

     

    Abstract: As a precise optical component, microlens array has applications in fields as optical information processing, optical sensing, optical computing, optical communications and high sensitivity imaging. Researchers have developed many advanced fabrication techniques, some of which already realized the preparation of the microlens array with required geometries, profile and optical properties. However, it would be extremely difficult to achieve a compact packing as such 3D micro-manufacturing techniques are hard to control. A novel rapid and low-cost microfluidic-manipulation based technique was proposed to fabricate high-filling-factor microlens array. A brief demonstration of the fabrication was given, which had excellence of suited to volume production and significant productivity boost. Meanwhile, the microlens arrays of three different properties were produced, which were realized by adjusting the size of the array of micro-posts whose sizes were 300, 500, 700 μm in diameter, respectively. The imaging system was set up to demonstrate the imaging performance of each of the microlens array, evaluating the precision of each microlens array and imaging uniformity of the microlens array. The results show that the fabricated microlens arrays have good imaging performance and have a promising prospect in the use of 3D imaging and optical uniformity.

     

/

返回文章
返回