Abstract:
As a precise optical component, microlens array has applications in fields as optical information processing, optical sensing, optical computing, optical communications and high sensitivity imaging. Researchers have developed many advanced fabrication techniques, some of which already realized the preparation of the microlens array with required geometries, profile and optical properties. However, it would be extremely difficult to achieve a compact packing as such 3D micro-manufacturing techniques are hard to control. A novel rapid and low-cost microfluidic-manipulation based technique was proposed to fabricate high-filling-factor microlens array. A brief demonstration of the fabrication was given, which had excellence of suited to volume production and significant productivity boost. Meanwhile, the microlens arrays of three different properties were produced, which were realized by adjusting the size of the array of micro-posts whose sizes were 300, 500, 700 μm in diameter, respectively. The imaging system was set up to demonstrate the imaging performance of each of the microlens array, evaluating the precision of each microlens array and imaging uniformity of the microlens array. The results show that the fabricated microlens arrays have good imaging performance and have a promising prospect in the use of 3D imaging and optical uniformity.