多波段共孔径光学成像系统的几种实现途径(特约)

Several ways to realize multi-band common aperture optical imaging system(Invited)

  • 摘要: 借助微分方法,提出光学系统内的消波段间色差和波段内色差条件,建立了扩展的复消色差理论,通过对比各自波段和全波段的折射率-色差系数,进行材料配对,并迭代优化校正各类像差。由此介绍了几种多波段共孔径光学系统的实现途径和具体设计实例,包括:透射式结构的宽波段及多波段成像物镜光学系统;透射式结构的中波/近红外二次成像变焦系统;透射式结构的中/长波红外二次成像变焦系统;通过反求工程(Reverse Engineering)设计了AN/AAQ-33“狙击手XR”吊舱采用的中波/近红外共孔径透射式前置望远系统主光路;AN/ASQ-228 ATFLIR吊舱采用的共孔径离轴三反射式消像散前置望远系统主光路;AN/AAS-52 MTS-B吊舱采用的同轴偏视场三反前置望远系统主光路;EKV采用的同轴四反二次成像系统;拓展介绍了采用同轴折反式前置望远+后置成像结构的光路结构,包括同轴折反式中波/短波/近红外和长/中/短波红外望远系统+后置分光成像系统的设计;以及一些典型弹载光学系统共孔径或共光路的设计。

     

    Abstract: By using differential method, the inter-band chromatic aberration and intra-band chromatic aberration conditions in optical system were introduced, and the extended complex chromatic aberration theory was established. By comparing the refractive vs chromatic coefficients of each band and the whole band, the material was matched and iteratively optimized to correct all kinds of aberrations. Several ways of realizing the multi-band common aperture (MCA) optical system were discussed, including the medium-wave (MW)/near-infrared (NIR) secondary imaging system with transmission structure, which was introduced into the respective detectors by the dichroic beam splitter in convergent optical path; the MW/long-wave (LW) infrared secondary imaging system with transmission structure, which adopted the co-focal surface design of the co-optical road; and the AN/AAQ-33 “Sniper XR” pod’s main optical system, which adopted MW/NIR co-aperture transmission fore telescope system; the AN/ASQ-228 ATFLIR pod’s main optical system, which adopted the MCA off-axis three-mirror anastigmatic (TMA) fore telescope system; the AN/AAS-52 MTS-B pod’s main optical system, which adopted the MCA coaxial bias field of view (FOV) TMA fore telescope system; the EKV’s main optical system, which adopted the MCA coaxial four mirror secondary imaging system. And correspondingly, some coaxial mirror-lens fore telescope systems were introduced, and the last, some typical missile borne MCA imaging optical structures were introduced.

     

/

返回文章
返回