Abstract:
Metasurface is an artificially ultrathin material with two-dimensional nanostructure array, which can achieve flexible modulation on amplitude, phase and polarization of light field in a sub-wavelength scale, providing a new possibility for the miniaturization and integration of modern optical devices. With the development of optical imaging, display and so on, the requirement of miniaturized optical devices with high efficiency in visible light band is becoming conspicuous. In recent years, optical metasurfaces fabricated by dielectric materials with high refractive indices and low losses have been extensively studied, showing application prospects in achromatic metalens, polarization-dependent holographic display, et al. Around the research on the metasurface of dielectric, firstly, the generalized Snell's law and the modulation principle of nanostructures in dielectric metasurface on amplitude, phase and polarization of light field were introduced. Then the research progress of dielectric metasurfaces in holographic display and structural light field generation, based on single- and multi-parameters modulation of light field was reviewed. At last, the possible challenges and prospects of dielectric metasurfaces were discussed.