啁啾脉冲光学参量振荡器及宽谱中红外激光的产生(特邀)

Chirped-pulse optical parametric oscillators and the generation of broadband midinfrared laser sources (Invited)

  • 摘要: 宽谱中红外激光光源在红外显微光谱学、环境监测、医疗诊断以及超短脉冲产生等领域有着广阔的应用前景和急迫的需求。聚焦同步泵浦光学参量振荡器(SPOPO)的输出光谱带宽,提出了一种能够有效消除泵浦脉冲宽度对于SPOPO宽谱输出性能的限制的运转模式,即啁啾脉冲光学参量振荡器(CPOPO)。提出并介绍了基于自相位调制(SPM)效应和采用啁啾准相位匹配(CQPM)晶体这两种CPOPO的具体技术方案。基于周期极化铌酸锂(PPLN)晶体成功实现了以宽谱啁啾脉冲运转的CPOPO,最终分别获得了覆盖2.9~4.1 μm (约30 THz)、功率为92 mW和2.9~5.0 μm (约44 THz)、功率为64 mW的宽谱中红外激光输出。

     

    Abstract: Mid-infrared laser sources with broad instantaneous-bandwidth are critical for many applications, including infrared micro-spectroscopy, environmental monitoring, medical diagnosis, and ultra-short pulse generation. In this article, the output spectrum bandwidth from synchronously pumped optical parametric oscillator (SPOPO) was focused on and a scheme, chirped-pulse optical parametric oscillator (CPOPO) was proposed to achieve broadband output beyond the limitation of pump pulse width. The CPOPO with self-phase modulation (SPM) or chirped quasi-phase matching (CQPM) were studied and achieved through period-poled lithium niobate (PPLN) based SPOPO. The outputs covered 2.9-3.9 μm (~27 THz) with power up to 92 mW and 2.9-5.0 μm (~44 THz) with 64 mw, respectively.

     

/

返回文章
返回