Yb,Ho,Pr:GYTO晶体生长、结构及光谱性能(特邀)

Growth, structure, and spectroscopic properties of Yb,Ho,Pr:GYTO single crystal (Invited

  • 摘要: 首次采用提拉法成功生长出了新型中红外激光晶体Yb,Ho,Pr:GYTO,采用X射线Rietveld精修方法得到了晶体的结构参数。测量了Yb,Ho,Pr:GYTO晶体(100)、(010)和(001)衍射面的X射线摇摆曲线,衍射峰的半峰宽分别为0.036°、0.013°和0.077°,表明生长出的晶体是单晶并且具有较高的结晶质量。采用激光剥蚀电感耦合等离子体质谱法测定了Yb,Ho,Pr:GYTO晶体中Yb3+、Ho3+、Pr3+和Y3+的浓度,Yb,Ho,Pr:GYTO晶体中Yb3+、Ho3+、Pr3+和Y3+的有效分凝系数分别为0.624、1.220、1.350和0.977。测量了Yb,Ho,Pr:GYTO晶体室温下的极化吸收谱,并指认了相应的能级吸收跃迁。940 nm半导体激光器激发的2.9 μm荧光光谱表明,最大发射波长为2908 nm。此外,还论证了GYTO中Yb-Ho-Pr的能量传递机制。与Ho:GYTO晶体相比,Yb,Ho,Pr:GYTO晶体的5I7能级寿命降低了87.13%,与上能级5I6的寿命相近,说明Yb,Ho,Pr:GYTO晶体更容易实现粒子数反转和激光输出。

     

    Abstract: A new mid infrared laser material Yb,Ho,Pr:GYTO crystal was grown successfully using Czochralski method for the first time. The structural parameters were obtained by the X-ray Rietveld refinement method. The X-ray rocking curves of the (100), (010), and (001) diffraction face of Yb,Ho,Pr:GYTO crystal were measured. The full widths at half maximum of those diffraction peaks are 0.036°, 0.013°, and 0.077°, respectively, which indicates a high crystalline quality of the as-grown crystal. Laser Ablation Inductively-Coupled Plasma Mass Spectrometry was used to measure the concentrations of Yb3+, Ho3+, Pr3+, and Y3+ ions in the Yb,Ho,Pr:GdYTaO4 crystal. The effective segregation coefficients of Yb3+, Ho3+, Pr3+, and Y3+ in Yb,Ho,Pr:GYTO crystal are 0.624, 1.220, 1.350, and 0.977, respectively. The room-temperature polarhosized absorption spectra of Yb,Ho,Pr:GdYTaO4 was measured and the corresponding absorption transitions were assigned. The 2.9 μm fluorescence spectrum excited by 940 nm LD presents that the strongest emission is located at 2908 nm. In addition, the Yb-Ho-Pr energy transfer mechanism in GYTO was also demonstrated. Compared with Ho:GYTO crystal, the lifetime of 5I7 level of Yb,Ho,Pr:GYTO crystal is reduced by 87.13%, which is close to that of the upper level 5I6, indicating that Yb,Ho,Pr:GYTO crystal is easier to realize population inversion and laser output.

     

/

返回文章
返回