Abstract:
The reported work in 2003-2019 on the reverse saturable absorption (RSA) or two-photon absorption (TPA) and/or optical limiting (OPL) of platinum(II) terpyridine complexes was summarized in this minireview. Photophysical properties, including the ground-state absorption (GSA), excited-state absorption (ESA), excited-state lifetimes, and the quantum yields of triplet excited-state formation, RSA/OPL at 532 nm for ns laser pulses, TPA characteristics in the near-IR spectral regions, and the structure-property correlations were reviewed. This paper is composed of four sections. First, the current status of OPL materials and devices, the general requirements for reverse saturable absorbers and two-photon absorbing materials, and the different types and characteristics of square-planar platinum(II) complexes were briefly introduced. Then the photophysics and RSA/OPL of six series of Pt(Ⅱ) terpyridine-analogous complexes and the structure-property correlations were discussed. Following it the TPA of five series of Pt(Ⅱ) terpyridine complexes and the impacts of structural variations on the TPA cross sections (
σ2) were reviewed. Finally, brief conclusions were drawn based on the reported studies. A general trend discovered was that the charge transfer absorption band(s) and the ESA can be readily tuned by substituents on the acetylide or the terpyridine ligand. Introducing electron-donating substituent to the acetylide or terpyridine ligand or improving the coplanarity between the aromatic substituent and the terpyridine ligand red-shifted the ground-state charge-transfer absorption band(s) at the price of decreasing/quenching the triplet ESA, which consequently reduced the RSA/OPL at 532 nm. Extending the π-conjugation of the terpyridine ligand dramatically improved the
σ2 values of the Pt(Ⅱ) terpyridine complexes. Incorporation of electron-withdrawing π-conjugated aromatic substituent restrained the GSA to < 500 nm while keeping a long-lived triplet excited state with broadband ESA in the visible spectral regions and moderately strong TPA in the NIR regions. This approach could provide a solution for developing broadband OPL materials.