非故意掺杂吸收层InP/InGaAs异质结探测器研究

Study on InP/InGaAs hetero-structure detector with unintentionally doping absorption layer

  • 摘要: 为了获得低噪声铟镓砷(InGaAs)焦平面,需要采用高质量的非故意掺杂InGaAs(u-InGaAs)吸收层进行探测器的制备。采用闭管扩散方式,实现了Zn元素在u-InGaAs吸收层晶格匹配InP/In0.53Ga0.47As异质结构材料中的P型掺杂,利用扫描电容显微技术(SCM)对Zn在材料中的扩散过程进行了研究,结果表明,随着扩散温度和时间增加,p-n结结深显著增加,u-InGaAs吸收层材料的扩散界面相比较高吸收层浓度材料(5×1016 cm−3)趋于缓变。根据实验结果计算了530 ℃下Zn在InP中的扩散系数为1.27×10−12 cm2/s。采用微波光电导衰退法(μ-PCD)提取了InGaAs吸收层的少子寿命为5.2 μs。采用激光诱导电流技术(LBIC)研究了室温下u-InGaAs吸收层器件的光响应分布,结果表明:有效光敏面积显著增大,对实验数据的拟合求出了少子扩散长度LD为63 μm,与理论计算基本一致。采用u-InGaAs吸收层研制的器件在室温(296 K)下暗电流密度为7.9 nA/cm2,变温测试得到激活能Ea为0.66 eV,通过拟合器件的暗电流成分,得到器件的吸收层少子寿命τp约为5.11 μs,与微波光电导衰退法测得的少子寿命基本一致。

     

    Abstract: In order to obtain low-noise InGaAs focal plane arrays, it is necessary to adopt high-quality InGaAs material with a low unintentionally doping concentration(u-InGaAs) to fabricate the detector. Zn diffusion with sealed-ampoule method on the lattice-matched InP/In0.53Ga0.47As hetero-structure with a u-InGaAs absorption layer was carried out. And the Scanning Capacitance Microscopy (SCM) technology were used to study Zn diffusion in these samples. The results show that the junction depth increases significantly with the increase of diffusion temperature and time. The diffusion interface of materials with a u-InGaAs absorption layer tends to change slowly compared with relatively high concentration materials (5×1016 cm−3). According to the experimental results, the diffusion coefficient of Zn into InP under 530 ℃ is figured out, which is 1.27×10−12 cm2/s. The Microwave Photo Conductivity Decay method (μ-PCD) is used to extract the minority carrier lifetime of the InGaAs absorption layer. The measured minority carrier lifetime is 5.2 μs. Response distribution of devices with a u-InGaAs absorption layer at room temperature were studied by Laser Beam Induced Current technique (LBIC). The results show that the effective optically sensitive area increases significantly. The minority carrier diffusion length LD is 63 μm by fitting the experimental data, which is consistent with the theoretical calculation. The dark current density of the device with a u-InGaAs absorption layer is 7.9 nA/cm2 at room temperature, and the activation energy Ea is 0.66 eV. By fitting the dark current composition of the device, the minority carrier lifetime τp of the absorption layer of the device is about 5.11 μs, and the fitted minority carrier lifetime is consistent with the measured minority carrier lifetime.

     

/

返回文章
返回