监控视频中采用深度支持向量数据描述的异常检测

Anomaly detection based on deep support vector data description under surveillance scenarios

  • 摘要: 由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个目标而设计网络的。提出一种基于深度支持向量数据描述(Deep Support Vector Data Description, DSVDD)的方法,通过学习一个深度神经网络,使得输入的正常样本空间能够映射到最小超球面。通过DSVDD,不仅能找到最小尺寸的数据超球面以建立SVDD,而且可以学习有用的数据特征表示以及正常模型。在测试时,映射在超球面内的样本被判别为正常,而映射在超球面外的样例判别为异常。提出的方法在CUHK Avenue和ShanghaiTech Campus数据集上分别取得了87.4%和74.5%的帧级AUC,检测结果优于现有的最新方法。

     

    Abstract: Due to the ambiguity of anomaly definitions, the scarcity of anomalous data, as well as the complex environmental background and human behavior, video anomaly detection has always been a challenging problem in the field of computer vision. Existing anomaly detection methods based on deep learning often use a trained network to extract features or are trained based on the existing network structure, instead of designing a network for the goal of anomaly detection. In this paper, a new anomaly detection method—Deep Support Vector Data Description (DSVDD) was introduced, which was trained on an anomaly detection based objective. According to DSVDD, not only the smallest size data hypersphere coule be found to establish SVDD, but also useful data feature representations and normal models could be learned. Then, in the testing stage, the samples mapped inside the hypersphere were judged as normal, while the samples mapped outside the hypersphere were judged as abnormal. The method proposed in this paper achieves 87.4% and 74.5% frame-level AUC on the CUHK Avenue and ShanghaiTech Campus datasets, respectively, which outperforms existing state-of-the-art approaches.

     

/

返回文章
返回