大口径反射镜表面颗粒物洁净度控制实验研究

Experimental study of particles cleanliness control on the surface of large-aperture reflector

  • 摘要: 针对高功率固体激光装置反射镜表面的颗粒引起的损伤问题,分别进行离线实验和在线实验,采用风刀及暗场成像系统相结合研究表面颗粒去除率。研究结果表明:当风刀偏转角度为0°且风刀距离大口径反射镜镜面10 mm时,对灰尘颗粒的去除效果最好,可达96.5%,而对相同尺寸的Al2O3颗粒和Fe颗粒效果次之,对SiO2颗粒效果最差,在线平均去除率可达84.9%。通过对反射镜表面颗粒污染物的在线沉积规律研究表明采用风刀吹扫技术一周洁净一次可实现反射镜表面长期洁净,该技术可推广至大口径高能激光装置及未来超大型高功率激光装置中。

     

    Abstract: To the damage caused by surface contaminants from the reflector in the high power solid laser facility, the offline experiment and online experiment were carried out respectively, the remove rate of surface contaminants was investigated based on air knife combining dark field imaging technique. Experimental results show that when the deflection angle of the air knife is 0° and the distance between the air knife and the surface of large-aperture reflector is 10 mm, the removal effect of dust particles is the best, up to 96.5%, followed by particles of Al2O3 and Fe with same size, particles of SiO2 with same size is weakest, and the online average removal rate can reach 84.9%. Through the online research on the deposition law of particles pollutants on the surface of the large-aperture reflector, it is shown that the long-term cleanliness of the reflector surface can be realized by using the air knife sweeping technology once a week, which can be extended to large-aperture high-energy laser facility and future super large-scale high power laser facility.

     

/

返回文章
返回