CCD双站被动定位效能评估

Effectiveness evaluation for double-station passive location based on CCD

  • 摘要: 光电被动定位系统隐蔽性好,有利于提高复杂电磁环境中对抗作战的效能。建立基于CCD的双站被动定位系统模型,为提高测算精度,依据最小二乘法原理推导出静止目标坐标的求解方法。基于大气消光系数、目标背景亮度系数、CCD成像设备参数建立CCD侦察模型。以目标探测概率大于10%为标准,确定单个CCD的作用距离,并在此基础上分析CCD双站定位范围随双站间距的变化关系。在有效定位范围内抽取批量目标样本,计算双站定位误差,分析误差的均值和标准差随双站间距的变化规律。计算结果表明:对于确定的天气条件及CCD成像设备,当双站间距超过一定距离后,定位范围将逐步减小;定位误差及误差离散程度随着双站间距的增加先变小后变大。分析结果对于优化CCD设备参数、合理配置观测站位置具有一定的借鉴意义。

     

    Abstract: The system of photoelectric passive location with good concealment could improve the combat effectiveness of confrontation in complex electromagnetic environment. The system model of double-station passive location based on CCD was established. In order to improve the accuracy of calculation, the calculation method of target coordinate was provided according to the principle of least square method. The CCD reconnaissance model was established based on atmospheric extinction coefficient, the luminance coefficient of target and background, parameters of CCD imaging equipment. Based on the rule that the detection probability must be more than 10%, the operating distance of single CCD was calculated. Then, the change relations of the double-station location range and the distance of the stations was studied. By the target samples within the effective location range, the double-station location error was calculated. Then, the variation of mean value and standard deviation with the distance of the stations was analyzed. The calculation show that to certain weather and CCD, when the distance of the stations exceed a certain value, the location range would decrease rapidly. With the increase of distance, the location error and its dispersion first increase and then decrease. The analysis results have certain reference significance for optimizing CCD equipment parameters and reasonably configuring the position of observation stations observation stations. The analysis conclusion can be use for reference to optimize the CCD parameters and choose the reasonable location of observation station.

     

/

返回文章
返回