中红外飞秒双谐振光参量振荡器的腔长调谐(特邀)

Cavity-length detuning of mid-infrared femtosecond doubly resonant optical parametric oscillators (Invited)

  • 摘要: 超快双谐振光参量振荡器(DRO)在宽带中红外频率梳产生、中红外超短脉冲产生等领域有较大的应用前景。由于信号光与闲频光均在腔内振荡,DRO呈现出很多同单谐振光参量振荡器(SRO)所不同的工作特性。其中,在简并附近的腔长调谐特性是DRO中最具有代表性的特点。随着腔长的改变,DRO会在非简并、近似简并以及完全简并态之间切换状态。为具体分析腔长调谐对简并附近DRO工作状态的作用,文中基于数值仿真,对常用泵浦条件下,低色散飞秒泵浦DRO的腔长调谐特性进行了系统的研究与总结,并对相关特性的产生原因进行了理论分析。

     

    Abstract: Ultrafast doubly resonant optical parametric oscillators (DRO) are widely used in the generation of mid-infrared broadband optical combs and mid-infrared ultrashort pulses. Because the signal and idler lights both oscillate in the optical cavity, DROs exhibit many different features against singly resonant optical parametric oscillators (SRO). One typical feature is the cavity length detuning in degenerate DRO. The DRO would work in non-degenerate, near-degenerate, and totally degenerately states with cavity length detuning. In order to analyze the effect of cavity length detuning on the work state of degeneracy DRO, the cavity length detuning characteristics of DRO pumped with low dispersion femtosecond laser were systematically studied and summarized based on numerical simulation and usual pumping condition. The production reason of the correlation characteristic was analyzed in theory.

     

/

返回文章
返回