中红外大能量高功率周期量级光学参量啁啾脉冲放大的发展及应用(特邀)

Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (Invited)

  • 摘要: 近十年来,超强超短脉冲是激光光学发展的一个重要趋势。尤其是在中红外(MIR)波段,由于中红外波长具有更大的有质动力并且其光谱范围几乎包含了所有分子“指纹”共振峰,这使得中红外激光的研究在强场物理、中红外光谱学、材料加工以及生物医学研究等领域中至关重要。目前已经有许多比较成熟的激光技术可以对脉冲进行整形、放大,例如差频(DFG)、啁啾脉冲放大(CPA)、光学参量放大技术(OPA)以及光学参量啁啾脉冲放大(OPCPA)等。利用OPCPA技术具有的高放大增益、高信噪比、宽增益带宽的优点在高非线性系数的非线性晶体中进行脉冲放大已经成为当前获取超强超短中红外脉冲的主要手段之一。文中总结了利用OPCPA技术在2~20 μm波长范围内产生和放大MIR少周期脉冲的研究进展,并对其在强场物理、分子频谱探测以及生物医学方面的应用进行了简要的阐述。

     

    Abstract: In recent decades, ultra-intense ultrashort pulse is an important trend in the development of laser optics. Especially in the mid-infrared (MIR) band, because the mid-infrared wavelength has greater ponderomotive force and its spectral range contains almost all the molecular "fingerprint" resonance peaks, the research of mid-infrared laser is very important in the fields of strong-field physics, mid-infrared spectroscopy, material processing and biomedical research. At present, there are many mature techniques for pulse shaping and amplification, such as different frequency generation (DFG), chirped pulse amplification (CPA), optical parametric amplification (OPA) and optical parametric chirped pulse amplification (OPCPA). Using optical parametric chirped pulse amplification technology with its advantages of high amplification gain, high signal-to-noise ratio and wide gain bandwidth to amplify the pulse in nonlinear crystals with high nonlinear coefficient has become one of the main means to obtain ultra-short and ultra-intense mid-infrared pulse.This paper summarizes the research progress of generating and amplifying MIR few-cycle pulse in 2-20 μm based on OPCPA , and its applications in strong-field physics, molecular spectrum detection and biomedicine are briefly described.

     

/

返回文章
返回