缺陷镜技术直接产生高功率高阶涡旋激光研究(特邀)

Research on direct generation of high-power and high-order vortex lasers using defect-mirror technology (Invited)

  • 摘要: 涡旋光在光通信、量子纠缠、新的非线性光学效应、微纳机械加工、超分辨成像和光镊等领域具有重要的应用价值。涡旋光应用的前提条件是高质量涡旋光束的产生,将缺陷镜技术和固体激光谐振腔技术结合起来研究,对直接产生高光束质量、高稳定性和大拓扑荷数(高阶)的涡旋激光具有明显的优势。当前,该项技术多是用在简单的两镜线性腔中,且以连续波涡旋激光为主。文中使用紫外皮秒脉冲激光器制备了点缺陷镜,并采用LD端面泵浦Nd:YVO4晶体作为激光实验平台,构造了V型激光谐振腔,首次实现了复杂谐振腔内直接产生高阶涡旋激光输出。当吸收功率为11.46 W时,获得了最高输出功率为2.69 W的三阶涡旋激光,斜效率达到23.6%;进一步调节谐振腔及点缺陷尺寸,最高获得了13阶涡旋激光输出。该研究表明缺陷镜技术也可以用于复杂结构激光谐振腔,直接产生高阶涡旋激光,从而为其他运行模式(如调Q和锁模)的高阶涡旋激光研究提供了一定的依据。

     

    Abstract: Vortex light has important applications in optical communication, quantum entanglement, new nonlinear optical effect, micro- and nano-mechanical processing, super-resolution imaging and optical tweezers, etc. The precondition of vortex light applications is the generation of high-quality vortex light. The method of spot defect mirror combined with solid-state laser technology has outstanding advantage in direct generation of high-order vortex light with high quality and high stability. At present, this method has mostly used in various two-mirror linear cavities for laser generation in continuous-wave mode. A spot defect mirror using an ultraviolet picosecond laser was fabricated. Then, an diode-end-pumped Nd:YVO4 laser with a V-shaped laser cavity configuration was arranged. Based on this laser, a 2.69 W vortex laser with topological charge of 3 was achieved. Slope efficiency of this 3rd vortex laser was about 23.6%. Further changing the cavity length and defect spot size, high-order vortex laser output with topological charges up to 11 and 13 was also achieved. This research clearly indicates that the spot defect mirror technology can directly generate high-order vortex laser in a structurally complicated laser resonator, which has provided reference for Q-switched and/or mode-locked high-order vortex laser generation.

     

/

返回文章
返回