Abstract:
Aiming at the problem of synthetic aperture radar (SAR) attribute scattering center estimation, a method based on the firework algorithm was proposed. First, segmentation and decoupling of high-energy regions in the SAR image are performed in the image domain to obtain the representation of a single independent scattering center in the image domain. Afterwards, based on the parametric model of the attribute scattering center, an optimization problem was constructed to search for the optimal parameters of the separated single scattering center. At this stage, the firework algorithm was introduced to optimize the parameters. The algorithm has strong global and local search capabilities, and avoids falling into the local optimum thus ensuring the optimization accuracy and the reliability of the estimation of the scattering center parameters. The single scattering center after solution was eliminated from the original image, and the residual image was segmented into high-energy regions. And the attribute parameters of the next scattering center were estimated by inertia. Finally, the parameter set of all scattering centers on the input SAR image was obtained. In the implementation, the parameter estimation verification was performed based on the SAR images in the MSTAR dataset. The comparison of the parameter estimation results with the original image and the reconstruction of the original image based on the estimated parameter set reflect the effectiveness of the proposed algorithm. In addition, the experiment also validates the SAR target recognition algorithm based on the estimated attribute parameters. By comparing the recognition performance with other parameter estimation algorithms under the same condition, the performance superiority of the proposed method in the attribute scattering center parameter estimation was further demonstrated.