视频监控下利用记忆力增强自编码的行人异常行为检测

Memory-augmented deep autoencoder model for pedestrian abnormal behavior detection in video surveillance

  • 摘要: 随着视频监控数据的快速增长,对大规模视频数据的自动异常检测的需求越来越大,基于深度自编码器重构误差检测方法已经被广泛探讨。但是,有时自编码器“泛化”得很好,能够很好地重建异常并导致漏检。为了解决这个问题,提出了采用记忆力模块来增强自动编码器,称为记忆力增强自编码(Memory-augmented autoencoder, Memory AE)方法。给定输入,Memory AE首先从编码器获取编码,然后将其用作查询以检索最相关的记忆项来进行重建。在训练阶段,记忆内容被更新以表示正常数据的原型元素。在测试阶段,将学习到的记忆元素固定下来,从正常数据的几个选定的记忆记录中获得重建,因此重建将趋向于接近正常样本。因此,将加强对异常的重构误差以进行异常检测。对两个公共视频异常检测数据集,即Avenue数据集和ShanghaiTech数据集的研究证明了所提出方法的有效性。

     

    Abstract: With the rapid growth of video surveillance data, there is an increasing demand for video anomaly detection, and reconstruction error detection methods based on deep autoencoders have been widely discussed. However, the autoencoder generalizes well, can reconstruct the anomaly well and lead to missed detection. In order to solve this problem, this paper proposes to adopt a memory module to enhance the autoencoder, which is called the Memory-augmented autoencoder (Memory AE) method. Given the input, Memory AE first obtains the encoding from the encoder, and then uses it as a query to retrieve the most relevant memory items for reconstruction. In the training phase, the memory content is updated and encouraged to represent prototype elements of normal data. In the test phase, the learned memory elements are fixed, and reconstruction is obtained from several selected memory records of normal data, thus the reconstruction will tend to be close to normal samples. Therefore, the reconstruction of abnormal errors will be strengthened for abnormal detection. Experiments on two public video anomaly detection datasets, namely Avenue dataset and ShanghaiTech dataset, proves the effectiveness of the proposed method.

     

/

返回文章
返回