微波关联成像研究进展及展望(特邀)

Progress and prospect of microwave coincidence imaging(Invited)

  • 摘要: 微波关联成像起源于光学强度关联成像,通过对电磁波的调控形成空变和时变的辐射模式,突破天线孔径对成像分辨率的限制,具有前视、凝视、快拍成像等优势,在重点区域凝视观测、无人系统自主感知、安检安防等领域具有广阔的应用前景。文中简述了微波关联成像的技术起源,从成像原理、成像方法、成像系统等三个方面,总结了微波关联成像的研究现状与主要进展。通过对成像原理的剖析,阐明关联成像的基本条件与成像分辨率的影响因素;通过对成像方法的梳理,分析微波关联成像与光学关联成像以及传统微波成像方法之间的区别与联系;通过对成像系统的介绍,比较随机辐射、波前调制、孔径编码等多种成像体制的特点与差异,厘清技术发展脉络。最后,总结并展望了微波关联成像的未来发展趋势。

     

    Abstract: Originated from the optical intensity ghost imaging, microwave coincidence imaging breaks through the limitation of antenna aperture on imaging resolution by space and time-varying radiation mode through the modulation of electromagnetic waves. It has the advantages of forward-looking, staring and fast-shooting imaging, and has broad application prospects in the fields of staring observation in key areas, autonomous sensing of unmanned systems, security inspection and security protection and so on. The technical origin of microwave coincidence imaging was briefly described, and its current research status and main progress from three aspects including the imaging principle, imaging methods and imaging systems were summarized. Through the analysis of the imaging principle, the basic conditions for coincidence imaging and the influencing factors of imaging resolution were clarified. Through the review of imaging methods, the differences and relationships among microwave coincidence imaging, optical ghost imaging and conventional microwave imaging methods were analyzed. Through the introduction of imaging systems, the features and differences among various systems such as random radiation, wavefront modulation and aperture encoding were compared, which made the development of microwave coincidence imaging easier to perceive. Finally, the future development trend of microwave coincidence imaging was summarized and prospected.

     

/

返回文章
返回