采用线性自抗扰技术的高精度温度控制系统研制

Research on high precision temperature control system using linear auto disturbance rejection technique

  • 摘要: 随着光电检测技术的发展,红外气体检测技术在诸多领域有着广泛的应用。温度对于气体浓度及同位素丰度检测有着重要影响,采用比例-积分-微分(PID)控制算法的传统温度控制系统存在超调、响应时间慢和精度低的缺点。针对上述问题,首先使用COMSOL软件进行有限元分析,确定加热结构;然后以STM32单片机作为主控器件,通过16位AD芯片LTC1864进行实时温度数据采集;最后采用线性自抗扰算法(LADRC)算法调节PWM波,实现控制半导体制冷器(TEC)对系统温度的高精度实时动态调节。在19.8 ℃的环境温度下,进行目标温度为32 ℃的温控实验。结果表明,采用LADRC算法的温度控制系统在稳定工作时,温度波动标准差为0.0357 ℃,相比于采用PID算法的温度控制系统,具有无超调、响应时间快和高精度的优点。

     

    Abstract: With the development of photoelectric measurement technology, infrared gas detection technology is widely used in many fields. Temperature has an important influence on the detection of gas concentration and isotopic abundance. The traditional temperature control system using proportional integral differential (PID) control algorithm has the disadvantages of overshoot, slow response time and low precision. Firstly, COMSOL software is used to determine the heating structure by finite element analysis. Secondly, the STM32 single chip microcomputer is used to collect real-time temperature data through 16 bit AD chip LTC1864. Finally, the linear auto disturbance rejection algorithm (LADRC) is used to adjust the PWM wave that achieve the high-precision and real-time dynamic adjustment of the system temperature by controlling the semiconductor cooler (TEC). Under the temperature of 19.8 ℃ condition, an temperature control experiments with a target temperature of 32 ℃ is carried out. The results show that the standard deviation of temperature fluctuation is 0.0357 ℃. Compared with the temperature control system using PID algorithm, it has the advantages of no overshoot, fast response time and high precision.

     

/

返回文章
返回