漫反射成像法的激光参数测量系统设计

Design of laser parameter measurement system based on diffuse reflection imaging

  • 摘要: 精确地测量激光在大气传输后的光斑参数,是研究激光大气传播效应和分析激光发射系统性能的关键技术手段。测量激光远场参数的方法主要包括阵列探测法和相机成像法,目前在激光大气传输效应的测量评估中大都采用阵列探测法。由于探测器阵列靶受物理空间和研发成本等因素的限制不能均匀且高分辨率紧密排布,将造成采样光斑的失真,难以精确地测量远场光斑参数。针对此问题,利用相机分辨率高的特点,设计了一套基于漫反射屏成像法的激光参数测量系统。该系统最小测量分辨力小于0.39 mm,质心位置平均偏差为0.05 mm,测量光斑到靶功率不确定度优于10%。该系统能有效地测量激光发射系统的跟瞄精度和到靶功率,为分析激光大气传输效应和分析激光发射系统性能提供有效手段。

     

    Abstract: Accurate measurement of laser spot parameters after transmission in the atmosphere is a key technical means for studying the effects of laser atmospheric propagation and analyzing the performance of laser emission systems. The methods of measuring laser far-field parameters mainly include array detection method and camera imaging method. However, the current measurement and analysis of laser atmospheric transmission effect basically use array detection method. Because the detector array target detectors cannot be arranged uniformly and tightly due to the limitations of space physics and R&D costs, this will cause the distortion of the sampling spot and the far-field spot parameters cannot be accurately measured. Aiming at this problem, a set of laser parameter measurement system based on diffuse reflection imaging method is designed in combination with the high resolution of the camera. The minimum measurement resolution of the system is less than 0.39 mm, and the average deviation of the centroid position is 0.05mm, the uncertainty of the power from the measurement spot to the target is better than 10%. The system can effectively measure the tracking accuracy and target power of the laser emission system, and has accumulated a certain theoretical basis and experimental data for analyzing the laser atmospheric transmission effect and analyzing the performance of the laser emission system.

     

/

返回文章
返回