激光模拟单粒子效应中单光子与双光子吸收诱导电荷量对比

Contrast of single-photon and two-photon absorption-induced charges in laser-simulated single event effects

  • 摘要: 通过理论推导和模拟试验,研究了单光子和双光子吸收分别占主导时,脉冲激光模拟试验中电荷收集效率之间的定量关系。分析不同光学参数对模拟试验中电离电荷浓度影响,确定具体激光波长、脉宽、能量及束斑等参数。根据脉冲激光在硅中单光子线性吸收和双光子非线性吸收的特点,推导单光子与双光子吸收产生电荷量比值的定量公式。通过1064 nm和1200 nm波长激光的验证试验,发现了响应脉冲及产生电荷量与脉冲激光能量或能量平方具有良好的线性关系,且在单光子吸收和双光子吸收各自占主导时,单光子吸收产生电荷率明显高于双光子吸收,证明了两种波长激光产生电荷量的比值近似等于公式计算结果。结果表明,1200 nm脉冲激光 1 nJ2 诱导电荷量等同于1064 nm脉冲激光 0.039 nJ诱导电荷量。

     

    Abstract: By using the ways of theoretical derivation and simulation experiments, the quantitative relationship between charge collection ability in pulsed laser simulation experiments is studied when single-photon absorption and two-photon absorption are dominant respectively. The effects of different optical parameters on ionizing charge concentration are analyzed in simulation experiments, and specific parameters such as laser wavelength, pulse width, energy and beam spot are determined. According to the characteristics of single-photon linear absorption and two-photon nonlinear absorption of pulse laser in Si, the quantitative formula of the ratio of charge generated by single-photon and two-photon absorption is derived. Through the verification experiments of 1064 nm and 1200 nm laser, it is found that the response pulse and the amount of charge generated have a good linear relationship with the pulse laser energy or energy square, and the charge generated by single-photon absorption is significantly higher than that by two-photon absorption when single-photon absorption and two-photon absorption are dominant respectively. It is proved that the ratio of the charge generated by the two wavelengths is approximately equal to the calculated result. The results show that the amount of charge induced by the 1200 nm pulsed laser 1 nJ2 is equal to the amount of charge induced by the 1064 nm pulsed laser 0.039 nJ.

     

/

返回文章
返回