Abstract:
Microlens arrays are widely used in beam homogenization, wavefront measurement, integrated imaging and other fields. A liquid tunable-focus plano-convex microlens array based on optical film (Optically Clear Adhesive, OCA) was demonstrated. A rectangular array of silicon microholes was used to control the aperture and arrangement of a single lens, and OCA optical film and deionized water were used as the shaping material of the microlens array. The focal length of the lens could be adjusted from 1.46 mm to 10.44 mm by adjusting the volume of liquid injection in the microfluidic cavity. According to the focusing and imaging experiments, it was confirmed that the microlens array had good uniformity. Finally, this microlens array was applied to laser beam homogenization and shaping. The beam homogenization and shaping were realized by a pair of microlens arrays. Furthermore, by fixing the spacing of a pair of microlens arrays, the size of the homogenized light spot can be adjusted within 7.2 mm to 8.4 mm, which provides a new idea for the adjustment of the size of the homogenized light spot.