Abstract:
Metalens, the specific type of lens designed with the surfaces mading of two dimensional array at the subwavelength scale, has shown great flexibilities to control the light field, including the arbitrary modulation abilities of amplitude, phase and polarization at the subwavelength scale. Moreover, the metalens possesses the unique advantages of low loss, integratable and conformable design and ultrathin, therefore attracts immense attentions in recent years. However, in most cases, the metalens designed for a specific wavelength may penetrate through the large chromatic aberration, which limits their usefulness in multi-wavelength or broadband applications. On the other hand, the metalens has renewed new degrees of freedom due to its two-dimensional planar structure, which has the potential in the elimination of chromatic aberration. Some different typical achromatic metalens designs and their achromatic modulation mechanism were reviewed, the existing achromatic metalens were classified from the types of modulated light bands, such as the achromatic matelens for discrete and continuous wavelength respectively, and the latter can be classified as transmissive and reflective from the working mode. Finally, the application of metalenses array in imaging and their prospect of broadband achromatic devices of large depth of field were introduced.