Abstract:
As infrared devices and technologies develops, the demand for megapixel mid-wave infrared imaging components of various night vision systems is rising. The megapixel mid-wave infrared imaging component based on the domestic 1280×1024 medium wave (15 μm) infrared HgCdTe detector was developed, which took the detector and the Dewar's own envelope as the benchmark and made a breakthrough in small form-factor and lightweight integrated design. The component with the size of 155 mm×95 mm×95 mm and the weight of 1400 g were considered to collect and process the information from the large area of Infrared Focal Plane Arrays (IRFPA). Thus, a low-noise image acquisition and processing hardware platform based on dual FPGA architecture was brought up, which supported SDI/Cameralink interface output. In the section of algorithm, the optimized non-uniformity correction (NUC) algorithm of the focal plane pixel response and the acquisition circuit, as well as the contrast limited adaptive histogram equalization (CLAHE) method compared with traditional image enhancement technologies were proposed. In addition, blind pixel replacement, denoising, latitude reduction and further procedures were implemented to make the image quality improving. Test results show that the noise equivalent temperature difference (NETD) of the component is lower than 30 mK, and the detector performs stably at the temperature from −40 ℃ to 60 ℃. The proposed improved algorithm is fruitful in raising the quality of both thermal imaging and infrared system performance.