基于改进的Deeplabv3+的红外航拍图像架空导线识别算法

Infrared aerial image overhead wire identification algorithm based on improved Deeplabv3+

  • 摘要: 随着国家电网规模的不断扩大,架空导线作为电力系统的重要组成,对它的定期巡检变得极其重要,同时,随着低空飞行领域的开放,为了保证国家电网的正常运行及低空飞行的安全,架空导线的识别也变得极其重要。文中提出了一种使用Deeplabv3+语义分割网络模型对红外航拍图像架空导线进行识别的方法,并且针对红外架空导线图像目标的特征对该算法进行了改进。首先在原Deeplabv3+算法的特征提取主干网络ResNet50中加入注意力机制,使网络突出导线目标所在区域的特征,更加关注导线目标所在的位置,进而弱化背景等非主要区域的特征。然后对Deeplabv3+的编码器部分进行改进,在ResNet50模型中加入特征金字塔网络,可以将浅层和深层的特征进行融合,增强网络对不同大小目标属性的识别能力,及导线这种小目标的检测能力,进而提高网络的整体识别效果。实验结果表明:改进后的算法检测性能良好,均像素精度为93.52%,平均交并比为87.83%。

     

    Abstract: With the continuous expansion of the scale of the national grid, overhead conductors, as an important component of the power system, have become extremely important to its regular inspection. At the same time, with the opening of the low-altitude flight field, the identification of overhead conductors has also become extremely important to ensure the normal operation of the national grid and the safety of low-altitude flight. The method for identifying overhead wires in infrared aerial images was proposed using the Deeplabv3+ semantic segmentation network model, and the algorithm was improved according to the characteristics of infrared overhead wire image targets in this paper. Firstly, an attention mechanism was added to the feature extraction backbone network ResNet50 of the original Deeplabv3+ algorithm, so that the network highlights the characteristics of the area where the wire target was located, and paid more attention to the location of the wire target, thereby weakening the background and other non-main area features; Then, the encoder part of Deeplabv3+ was improved, and the Feature Pyramid Networks (FPN) was added to the ResNet50 model, which can fuse the shallow and deep features, enhance the network's ability to identify the attributes of targets of different sizes, and the performance of small targets such as wires, and then improve the overall recognition effect of the network. The experimental results show that the improved algorithm has good detection performance, the average pixel accuracy is 93.52%, and the average intersection ratio is 87.83%.

     

/

返回文章
返回