高超声速飞行器红外波段及窗口选择(特邀)

Infrared waveband and window selection for hypersonic vehicle (Invited)

  • 摘要: 随着技术发展,现代化战争对新型武器提出了更高的要求,高超声速飞行器的发展也备受关注,红外成像制导在高超声速飞行器的末制导领域中占有重要地位。红外成像设备易受到背景辐射和窗口热辐射带来的干扰,产生的背景噪声易造成图像饱和。通过试验对比中、长波热像仪对高温物体、太阳、云层、海面、干扰弹以及转动、高速、高动态条件下的成像效果,并且试验对比尖晶石、氧化钇、氧化锆以及硫化锌材料自身热辐射分别对中、长波热像仪成像的影响,通过测试得出各窗口在高温下透过率的相对衰减率。对比分析得出长波热像仪在抗干扰等方面占有优势,硫化锌材料具有低辐射、高透过率、以及耐压性能好等优势。中、长波对比试验对于工作波段选择以及窗口材料选择提供了参考与支持,对后续中-长波双色系统设计研究具有参考价值。

     

    Abstract: With the development of technology, modern warfare puts forward higher requirements for new weapons, and the development of hypersonic vehicles has attracted much attention. Infrared imaging equipment plays an important role in the terminal guidance field of hypersonic vehicles. Infrared imaging equipment is susceptible to interference from background radiation and thermal radiation from windows, and the background noise generated by the interference can easily cause imaging saturation. The imaging effects of mid- and long-wave thermal imagers were compared by experiments, high-temperature objects, the sun, clouds, sea surface, jamming bombs and rotating, high speed, high dynamics conditions. And the effects of spinel, yttrium oxide, zirconia and zinc sulfide materials' own thermal radiation on the imaging of medium and long wave thermal imaging instrument were compared, the relative attenuation rate of transmittance of windows at high temperature was obtained by testing. The comparative analysis show that the long wave thermal imager has advantages in anti-interference, and the zinc sulfide material has the advantages of low radiation, high transmittance and good pressure resistance. Mid- and long-wave comparison tests provide reference and support for the selection of working wavebands and window materials, and have reference value for the subsequent design and research of mid-long wavelength dual-band systems.

     

/

返回文章
返回