红外气动光学效应研究进展与思考(特邀)

Research progress and thinking of infrared aero-optical effect (Invited)

  • 摘要: 红外成像探测技术是精确制导的重要手段,随着导弹武器向超音速、高超音速方向发展,红外成像探测装置的工作环境更为恶劣。高速飞行条件下恶劣的气动力热环境使红外窗口的结构安全面临极大挑战,激波、窗口等高温辐射源的辐射干扰严重影响红外探测能力,流场和窗口的传输效应降低了探测制导精度。气动光学效应是高速红外探测与传统红外探测的本质的区别,也是决定红外探测应用于高速导弹可行性的关键因素。文中主要介绍了高速红外成像探测的气动力热效应、热辐射效应和传输效应及其影响,阐述了气动光学效应在机理研究、试验研究、数值模拟和抑制校正技术方面的进展,最后给出了高速红外探测气动光学效应研究的思考与建议。

     

    Abstract: Infrared imaging detection technology is an important means of precision guidance. With the development of missile weapons to supersonic and hypersonic, the working environment of infrared imaging detection devices is worse. The structure safety of infrared windows faces great challenges because of the severe aerodynamic thermal environment in high speed flight. The radiation interference of high-temperature radiation sources such as shock wave and window seriously affects the infrared detection ability. The transmission effect of flow field and window reduces the detection and guidance accuracy. Aero-optical effect is the most essential difference between high-speed infrared detection and traditional infrared detection, and it is also the key factor to determine the feasibility of infrared detection applied to high-speed missiles. This paper mainly introduced the aerodynamic thermal effect, thermal radiation effect, transmission effect and their influence of high-speed infrared imaging detection, expounded the progress of aero-optical effect in mechanism research, test research, numerical simulation and correction technology, and finally gave the thoughts and suggestions on the research of aero-optical effect of high-speed infrared detection.

     

/

返回文章
返回