Abstract:
Visual information is an important means for human beings to perceive the surrounding environment. With the great expansion of human “field of view” by optical imaging and image processing technology, the way people acquire images has broken through the limitations of the naked eye. The scattering effect leads to a significant decrease in the working distance of the optical imaging system, making it difficult to effectively observe long-range targets. Human perception of image information is usually completed by focusing, correction and stereoscopic view synthesis, which are coupled with each other. Among them, the processes of focusing and binocular image information correction can be optimized by means of optical systems and digital image processing. With the improvement of contrast under strong scattering background, the image information under scattering conditions can be perceived and analyzed. However, limited by current technology, the ability of machine stereoscopic vision is difficult to reach human level, resulting in the human visual system still being an important terminal for image perception and analysis. It is foreseeable that in order to achieve accurate acquisition and analysis of optical image information under low visibility conditions, it is still necessary to develop a global optimization technology for stereoscopic vision through the combination of human vision and machine. This study mainly introduces the physical limitations and key factors influencing the optical imaging and image fusion under turbid atmosphere or water, and presents an outlook on the role of human stereopsis in improving optical imaging capabilities.