大口径离轴非球面离心力误差修正的车削方法

Turning method for correcting centrifugal force error of large-diameter off-axis aspheric surface

  • 摘要: 大口径离轴非球面反射镜进行高精度车削过程中,由离心力引起的微米级面形误差变得尤为重要。为了减小离轴非球面反射镜在车削过程中受离心力变形而引起的面形误差,对离轴非球面铝合金反射镜开展了单点金刚石车削工艺研究。通过分析离心力产生机理,构建了抑制离心力坐标变换加工模型;利用有限元仿真的方法优化了坐标变换的平移位移和旋转角度,最后基于优化结果对口径320 mm的RSA6061铝合金离轴非球面反射镜进行车削实验,获得了面形精度为RMS 0.198λ(λ=632.8 nm)的离轴非球面铝合金反射镜,验证了该优化加工方法的有效性。上述优化方式能够显著提高单点金刚石车削加工大口径离轴非球面反射镜的加工精度。

     

    Abstract:
      Objective  As the core optical element of the off-axis optical system, the off-axis aspheric mirror has the function of reducing the volume of the optical system, increasing the field of view and improving the imaging quality. Aluminum alloy material is one of the commonly used materials for off-axis aspheric mirrors because of its high processing efficiency, low cost and the ability to realize the athermalized design of the optical systems. Due to the special application field of the off-axis optical system, the accuracy requirements of the off-axis aspheric surface are very strict. In the process of high-precision turning of large-diameter off-axis aspheric aluminum alloy mirrors, the micron-level surface shape error caused by centrifugal force becomes non-negligible. In order to reduce the surface shape error caused by centrifugal force deformation of off-axis aspheric aluminum alloy mirror during turning, it is necessary to study the single-point diamond turning process of off-axis aspheric aluminum alloy mirror.
      Methods  Based on the basic principle of centrifugal force generation, a machining method to suppress centrifugal force error is proposed (Fig.4). Through the finite element simulation method, the translation displacement and rotation angle of the centrifugal force coordinate transformation machining model are optimized. Taking an off-axis aspheric aluminum alloy mirror with an aperture of 320 mm as an example, the optimal coordinate transformation parameters are reflected in the optimization results (Fig.6), and the off-axis aspheric mirror is used for ultra-precision turning.
      Results and Discussions  Using the processing method of suppressing centrifugal force error, the off-axis aspheric surface of aluminum alloy with a diameter of 320 mm is processed by Nanoform 700 ultra diamond lathe, and the processing results are detected by Zygo interferometer. A high-precision off-axis aspheric aluminum alloy mirror with PV of 3.121λ and RMS of 0.198λ (Fig.8) is obtained. The machining method of surface suppression centrifugal force error can provide theoretical guidance for the ultra-precision machining of large-aperture off-axis aspheric aluminum alloy mirror, and provide theoretical support for the large-aperture turning of other materials.
      Conclusions  Aiming at the problem that the surface shape accuracy of large-aperture off-axis aspheric mirror is deteriorated due to the centrifugal force error in single-point diamond turning process, a machining method to suppress centrifugal force deformation is proposed. According to the mechanism of centrifugal force generation, a machining model for suppressing centrifugal force coordinate transformation is established. The influence of different translation displacements and rotation angles on the surface shape accuracy in the process of coordinate transformation is analyzed and optimized by finite element simulation. Finally, the ultra-precision turning experiment of RSA6061 aluminum alloy off-axis aspheric mirror with an aperture of 320 mm is carried out by using the coordinate transformation parameters obtained by the simulation analysis, and a high-precision off-axis aspheric aluminum alloy mirror with RMS of 0.198λ is obtained. The proposed processing method of suppressing centrifugal force deformation realizes the ultra-precision machining of large-diameter off-axis aspheric aluminum alloy mirrors. While improving the surface shape accuracy of the off-axis aspheric aluminum alloy mirror, the limitation of the aperture, off-axis amount and vector height difference on the processing stroke in the manufacturing process of the off-axis aspheric aluminum alloy mirror is reduced, and the manufacturing accuracy of the aluminum alloy optical element is effectively improved.

     

/

返回文章
返回