利用抖动算法扩展深度范围的三维形貌测量术

Depth range enhancement of three-dimensional profiling measurement technology based on dithering algorithms

  • 摘要: 数字条纹投影技术由于其非接触、测量精度高等特点在生物医学监测、虚拟现实以及计算机视觉等领域中应用越来越广泛。但其仍存在一定局限性,例如测量深度范围受限和投影仪存在非线性误差。二值离焦技术很好地克服了条纹投影三维测量中的非线性问题,但二值图像的高次谐波分量会造成测量误差。文中提出一种基于抖动算法的多频相位选择方法,该方法利用离焦抖动技术减少二值图像的高次谐波,避免投影仪非线性误差的影响;同时采用不同抖动算法及扫描方向调制得到二值图像,通过对比周期为12~60 pixel范围内的条纹图像在25个离焦程度下的展开相位误差分布,筛选出相应图像频率的离焦选择范围,最终确定不同离焦程度下条纹频率的最优选择。对于深度为22.5 cm被测物体进行了实验,正确恢复了大深度物体的三维形貌。实验结果表明:文中所提出的方法能有效地扩展测量深度范围,从而实现大深度范围被测物体的三维形貌测量。

     

    Abstract:
      Objective  With the rapid development of modern information technology, optical three-dimensional (3D) profiling measurement technology has gradually matured. Among numerous optical 3D profiling measurement technologies, due to its non-contact and high-accuracy measurement, digital fringe projection(DFP) technology is increasingly applied in the fields such as biomedical monitoring, virtual reality, and computer vision, and has broad prospects for development due to its non-contact and high measurement accuracy. However, this technology still faces some technical challenges: 1) Due to the limited depth of field of the system equipment (such as cameras and projectors), only the 3D shape of objects within a limited depth of field can be reconstructed; 2) Nonlinearity problems caused by the γ-effect of commercial projectors may affect measurement accuracy. To overcome these problems, this paper proposes a method to extend the measurement depth range, which can achieve high-accuracy measurement of multiple objects at different depths or objects with a large depth range.
      Methods  The paper proposes a novel method for measuring the 3D shape of objects with a large depth range. Firstly, defocus technique is used to measure the dithering pattern in a simulated sinusoidal mode, avoiding the influence of projector non-linear errors on 3D measurement of fringe projection and increasing the measurement speed. Then, by analyzing the relationship between the degree of defocusing of the fringe and the depth (Fig.1-2), this paper analyses the relationship between fringe defocus and depth and finds that the defocus degree of fringes at different frequencies is inconsistent with the depth variation nodes. Based on this, a multi-frequency phase selection method is proposed in this paper. The optimal frequency mode determination algorithm (Fig.4) is used to select the bayer dithering algorithm and the floyd-steinberg dithering algorithm to generate dithering patterns. After comparing the phase error distribution of the fringe images within the range of 12-60 pixel in period at 25 defocus levels, the defocusing selection range of the corresponding fringe frequency is screened to determine the optimal selection of fringe frequency at different defocusing degrees. Then, in order to obtain a binary pattern with the highest quality sinusoidal structure, 8 different scanning orders are used based on the selection results of the optimal frequency mode which is to select the optimal dithering mode for the current frequency (Tab.1). Finally, the method uses the selected dithering fringe pattern within the optimal frequency range to obtain the 3D shape of the object. The proposed method can extend the measurement range of object depth by selecting multi-frequency dithering fringe and determining the optimal frequency at different defocus degrees.
      Results and Discussions   This paper presents qualitative and quantitative comparison experiments between the standard sinusoidal fringe and the proposed method. In the qualitative experiment, both methods are used to reconstruct the 3D shape of an object with a depth of 22.5 cm (Fig. 9). The measurement results of the proposed method are better than those of the standard sinusoidal fringe method with complete shape, clear details and without ripple phenomenon. Moreover, in the quantitative experiment, the maximum absolute error of the proposed method is 0.033 mm (Tab.2), which is comparable to the measurement accuracy of traditional DFP technology. Therefore, the proposed method not only ensures measurement accuracy but also extends the measurement depth range, and effectively solves the problem of measuring the 3D shape of objects with a large depth in the DPF field.
      Conclusions  This paper proposes a MFPS method based on dithering algorithms to solve the limited measurement depth range and nonlinearity problem of the existing DFP technology. By using defocusing dithering techniques, the impact of projector nonlinearity error is overcome. Moreover, the MFPS method is used to generate dithering fringe patterns for measurement, which extends the measurement depth range. Experimental results demonstrate that the proposed method effectively extends the measurement depth range and achieve 3D shape measurements of objects in a large depth range.

     

/

返回文章
返回