上升段气动加热对飞行中段高速飞行器红外辐射特性影响分析

Analysis of the influence of aerodynamic heating in ascent stage on infrared radiation characteristics of high-speed aircraft in midcourse

  • 摘要: 飞行中段高速飞行器红外辐射特性是对其进行红外探测、识别及跟踪的基础。飞行中段高速飞行器红外辐射与表面温度密切相关,而飞行器表面温度又与上升段气动加热、空间环境热辐射、防热材料结构等有关,特别是上升段气动加热对飞行中段飞行器红外辐射的影响不容忽视。为获得复杂环境背景下高速飞行器在飞行中段的红外辐射,综合考虑上升段气动加热、环境辐射加热、表面辐射散热和结构热传导等主要因素影响,采用气动热工程计算模型、空间辐射加热、一维多层热传导计算方法,建立了高速飞行器红外辐射分析技术,实现了气动加热、环境辐射加热、自身辐射散热、结构热传导等多种主要因素影响下的高速飞行器飞行中段温度场和红外辐射分析。结果表明:上升段的气动加热会对飞行中段的高速飞行器红外辐射产生较大影响;在飞行中段,飞行器在长波8~12 μm波段的红外辐射强度明显大于在中波3~5 μm波段的红外辐射强度,选择8~12 μm波段更有利于对飞行中段高速飞行器的探测。

     

    Abstract:
      Objective  Infrared radiation characteristics is the basis of midcourse infrared warning, detection, identification and track of high-speed aircraft. High-speed aircraft midcourse infrared radiation is closely related to surface temperature, which is related to ascent-stage aero-heating, space thermal radiation, heat-shield structure, and so on. In order to obtain high-speed aircraft’s midcourse infrared radiation in the complex environment background, it is necessary to study the influence of aero-heating, space thermal radiation, surface heat-shield radiating and structure heat conduction on the infrared radiation.
      Methods  Taking into account the influence of ascent-stage aero-heating, space thermal radiation, surface heat-shield radiating and structure heat conduction, making use of aerodynamic heating engineering computation model, space thermal heating computation model, and 1D multi-layer heat conduction computation method, the high-speed aircraft infrared radiation analysis technology is established, and high-speed aircraft midcourse temperature field and infrared radiation analysis is realized under the influence of aero-heating, space radiation heating, radiation heat dissipation, structure heat conduction, and so on.
      Results and Discussions   The computation temperature results match well with flight test results under typical working conditions (Fig.4-5), which verifies the validity of the computation model and methods. The ascent-stage aero-heating has a large effect on the midcourse surface temperature and infrared radiation (Fig.7-10). In the midcourse, the infrared radiation intensity in the wavelength range of 8-12 μm is notably larger than that of 3-5 μm. Therefore, choosing the wavelength range of 8-12 μm is more advantageous for high-speed aircraft midcourse detection (Fig.11).
      Conclusions  In order to simulate the infrared radiation of the high-speed aircraft in midcourse flight, the temperature field and infrared radiation characteristics analysis technology is developed, considering the influence of ascent-stage aero-heating and so on. The technology is validated through comparison with flight test measurements. It is found that: the ascent-stage aero-heating has a large effect on the midcourse infrared radiation. In the midcourse, the infrared radiation intensity in the wavelength range of 8-12 μm is notably larger than that of 3-5 μm. Therefore, choosing the wavelength range of 8-12 μm is more advantageous for high-speed aircraft midcourse detection.

     

/

返回文章
返回