周朴, 蒋敏, 吴函烁, 邓宇, 常洪祥, 黄良金, 吴坚, 许将明, 王小林, 冷进勇. 学科交叉视角下的光纤激光:回顾与展望(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230334. DOI: 10.3788/IRLA20230334
引用本文: 周朴, 蒋敏, 吴函烁, 邓宇, 常洪祥, 黄良金, 吴坚, 许将明, 王小林, 冷进勇. 学科交叉视角下的光纤激光:回顾与展望(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230334. DOI: 10.3788/IRLA20230334
Zhou Pu, Jiang Min, Wu Hanshuo, Deng Yu, Chang Hongxiang, Huang Liangjin, Wu Jian, Xu Jiangming, Wang Xiaolin, Leng Jinyong. Fiber laser from interdisciplinary perspective: review and prospect (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230334. DOI: 10.3788/IRLA20230334
Citation: Zhou Pu, Jiang Min, Wu Hanshuo, Deng Yu, Chang Hongxiang, Huang Liangjin, Wu Jian, Xu Jiangming, Wang Xiaolin, Leng Jinyong. Fiber laser from interdisciplinary perspective: review and prospect (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230334. DOI: 10.3788/IRLA20230334

学科交叉视角下的光纤激光:回顾与展望(特邀)

Fiber laser from interdisciplinary perspective: review and prospect (invited)

  • 摘要: 光纤激光是20世纪以来国内的研究热点。国防科技大学在光纤激光方向的研究始于“十一五”期间,至今已有约15年的历程,取得了一系列同行认可的研究成果。学校光纤激光的研究主体依托于光学工程学科。光学工程学是学校的优势学科之一,近几轮学科评估中得到了很好的成绩,为光纤激光方面的研究提供了高水平的科研平台和人才队伍等;另一方面,光纤激光的发展也受益于学校学科门类比较齐全的优势和在学科交叉方面的有益探索与实践。文中从学科交叉视角,梳理学校光纤激光学科方向与电子、材料、控制、智能、纳米等学科方向交叉取得的若干重要突破,从科研范式演进、学科主体驱动、应用需求牵引和科教融合发展等四个方面分析交叉科学研究和交叉学科建设面临的机遇。

     

    Abstract:
      Since the turn of the century, China has been a research hub for fiber lasers. The National University of Defense Technology's research into fiber lasers began during the "11th Five-Year Plan" period and has lasted approximately 15 years, yielding a number of peer-reviewed research outputs. The optical engineering field underpins the majority of fiber laser research at the institution. Optical engineering is one of the university's dominating fields, with good results in recent discipline review, providing a high-level scientific research platform and talent team for fiber laser research. On the other hand, fiber laser development benefits from the advantages of reasonably complete subject categories as well as helpful exploration and practice in interdisciplinary aspects. From an interdisciplinary standpoint, this paper sorts out several important breakthroughs in the interdiscipline of fiber laser and electronics, materials, control, intelligence, nano, and other disciplines in the university, and analyzes the opportunities faced by interdisciplinary scientific research and interdisciplinary construction from four perspectives: the evolution of scientific research paradigm, subject driving, application demand traction, and the inception of interdisciplinary scientific research and interdisciplinary construction.
      Significance & Progress  The National University of Defense Technology's main fiber laser research is based on the discipline of optical engineering; Research in the fiber laser began during the "11th Five-Year Plan" period, has been about 15 years, and has achieved a series of peer-recognized research results. During the "11th Five-Year Plan" period, the university concentrated on scientific research in the fields of fiber laser coherent synthesis and supercontinuum fiber light source, and officially began related work in the fiber laser discipline, achieving research achievements represented by kilowatt fiber laser coherent synthesis system and high-power near-infrared supercontinuum light source. During the "12th Five-Year Plan" period, the university focused on high-power fiber lasers, gradually expanding its research into high-power fiber lasers, fiber passive devices, and so on, and achieved innovative results in cascade pumping high-power fiber lasers, special wavelength fiber lasers, high-brightness laser bunders, and high-power ultrafine lasers. Since the "13th Five-Year Plan," the research focus has shifted to the development of laser fiber materials and software, as well as the development of laser full machines to form a complete chain. As a representative of the corporation, we have obtained independent intellectual property software, virtual simulation courses, various types of laser fiber, high power and high beam quality single frequency/narrow linewidth/broadband fiber laser, cascade pump/semiconductor direct pump high power and high beam quality fiber laser, high power visible light/near infrared/mid-infrared supercontinuum light source, thousand-beam laser phase control/high power fiber coherent synthesis system.   This study examines the prospects for cross-disciplinary research and construction from four perspectives: the growth of scientific research paradigms, subject driving, application demand pulling, and science-education integration. The university's fiber laser approach has produced a number of notable research results, with input from other disciplines playing an essential role. The in-depth analysis, however, reveals that relevant research is primarily "reference" and "inspiration" between disciplines, such as the development of fiber simulation software mentioned in the introduction and ultra-long-term stable high-performance pulsed fiber laser, etc., which is more the result of personnel familiar with "optical engineering," "software engineering," and "nanoscience" working together to promote. In reality, there aren't many cross-disciplinary construction and cross-scientific research items. There are basically no examples like Logan Wright who have made significant contributions to various disciplines such as nonlinear fiber optics and artificial intelligence at the moment. The scientific foundation of relevant researchers must be strengthened further. However, with the rapid advancement of a new round of scientific and technological revolution, industrial change, and continuous innovation of education and teaching methods, it provides new opportunities for cross-scientific research and cross-disciplinary construction, as well as a broad space for the development of the fiber laser direction, and the fiber laser direction will continue to produce more innovative results.
      Conclusions and Prospects   After approximately 15 years of development, the university's research of fiber laser has accomplished a number of significant outcomes that are strongly tied to the support of the optical engineering discipline and the deep cross-integration of other associated disciplines. The continuous human science and technology development in this century is continuous comprehensive development, from comprehensive to more comprehensive, and this integration tendency is reflected in scientific research, discipline construction, personnel training, and other aspects. Although the development of fiber laser has experienced many problems and challenges, the research of fiber laser will continue to create more novel outcomes with the continued advancement of interdisciplinary construction and cross-scientific research.

     

/

返回文章
返回