王虎, 罗建军. 空间碎片多光谱探测相机光学系统设计[J]. 红外与激光工程, 2014, 43(4): 1188-1193.
引用本文: 王虎, 罗建军. 空间碎片多光谱探测相机光学系统设计[J]. 红外与激光工程, 2014, 43(4): 1188-1193.
Wang Hu, Luo Jianjun. Optical system design of multi-spectral camera for space debris[J]. Infrared and Laser Engineering, 2014, 43(4): 1188-1193.
Citation: Wang Hu, Luo Jianjun. Optical system design of multi-spectral camera for space debris[J]. Infrared and Laser Engineering, 2014, 43(4): 1188-1193.

空间碎片多光谱探测相机光学系统设计

Optical system design of multi-spectral camera for space debris

  • 摘要: 为了实现对空间碎片探测,提出了一种空间碎片多光谱探测相机光学系统,由可见光相机、长波红外相机、中波红外相机光学系统组成,三个相机共用主、次镜,在三路相机光学系统中同时加入校正组件平衡校正像差,可见光相机焦距为1000mm,视场为1.2,长波红外相机焦距为-250mm,视场为2.75,中波红外相机焦距为-500mm,视场为1.38,考虑了温度对相机像质的影响,采用热膨胀性系数小的材料作为反射镜基底,分析了三个相机光学系统在空间环境下(205℃)温度环境下的像质变化,设计结果能满足使用要求。

     

    Abstract: In order to detect the Space debris, a multi-spectral camera for Space debris was proposed. The multi-spectral camera was consisted of visible camera, long-wave infrared (LWIR) camera and mid-wave infrared (MWIR) camera. Three cameras used the primary mirror and secondary mirror together, including correction lens in every camera in order to balance aberration. The focal length was 1 000 mm and field of view was 1.2 for visible camera, and the focal length was 250 mm and field of view was 2.75 for LWIR camera, and the focal length was 500 mm and field of view was 1.38 for MWIR camera. Some measures were taken to make sure the less degradation of MTF for thermal distortion, such as a kind of material with good thermal property as mirror substrate to reduce surface distortion. The modulation transfer function(MTF) of three cameras in condition of 205℃ was analyzed, which showed a good result for user's requirement.

     

/

返回文章
返回