碲镉汞e-APD 焦平面数字化读出电路设计

Design of digital ROIC for HgCdTe e-APD FPA

  • 摘要: HgCdTe e-APD 工作于线性模式,通过内雪崩倍增效应将一个微弱的信号放大多个数量级。介绍了一个具有列共用ADC 制冷型(77 K)数字化混成式HgCdTe e-APD FPA 读出电路,可以应用于门控3D-LARDAR 成像,有主被动双模式成像功能。Sigma-delta 转换器比较适合于中规模128128 焦平面列共用ADC。调制器采用2-1 MASH 单比特结构,开关电容电路实现,数字抽取滤波器采用CIC 级联梳状滤波器。采用GLOBALFOUNDRIES 0.35 m CMOS 工艺,中心距100 m。设计了量化噪声抵消逻辑消除第一级调制器量化噪声,采用数字电路实现。CIC 抽取滤波器的每一级寄存器长度以方差为指标截尾,以降低硬件消耗。并且数字抽取滤波器工作电压降低到1.5 V,可以进一步降低功耗。仿真显示sigma-delta 转换器精度大于13 bit,功耗小于2.4mW,转换速率7.7 k Samples/s。

     

    Abstract: HgCdTe electron injection avalanche photodiodes(e-APDs) work in linear mode. A weak optical current signal is amplified orders of magnitude due to the internal avalanche mechanism. The design of digital ROIC with a column-shared ADC for cooled (77 K) hybrid e-APDs FPA was presented in this paper. Sigma-delta conversion was a promising solution for high-performance and medium size FPA as 128 128. A multistage noise shaping (MASH) 2 -1 single bit architecture sigma-delta ADC with switched-capacitor circuits was designed for column-shared ADC. A cascaded integrator-comb (CIC) filter was designed as the digital decimator filter. The circuit was implemented in the GLOBALFOUNDRIES 0.35 m CMOS process on the basis of a 100 m pixel pitch. A quantization noise subtraction circuit in modulator was designed to subtract the quantization noise of first-stage modulator. The register word length of the filter in each stage was carefully dimensioned in order to minimize the required hardware. Furthermore, the digital filters operate with a reduced supply voltage to 1.5 V. Simulation results showed that the sigma-delta conversion achieved the resolution higher than 13 bits and 2.4 mW power consumption per ADC at 7.7 k Samples/s rate.

     

/

返回文章
返回