新型高精度空间折转光管的设计方法

New design method of precise space replicated light-tube

  • 摘要: 星模惯测组合装置在标调过程中,要求测量星模拟器出射光束与惯组棱镜反射光束的方位夹角,两光束不仅方向相反且存在空间平移,为了实现单台经纬仪对该角度的测量,该系统中需要加入特定的折转光管.提出了一种新型的空间转折光管的设计方法,能够实现光路的180折转和垂直于星模拟器光轴的平面内的二维平移,设计中采用了直角屋脊棱镜与斜方棱镜,很好地消除了安装误差;为了消除由于棱镜加工误差带来的折转光管传递偏差,设计中加入双光楔结构.折转光管的光路通过双光楔机构可以发生一定的偏转,该偏转可以抵消折转光管各个部分带来的传递偏差.实验结果表明,该设计方法可以很好的实现光路折转地要求,同时在保证折转光管的传递精度的基础上,降低了整个光管的加工成本.

     

    Abstract: During the calibration and regulation of star simulator inertial measurementunit equipment, the parameter what is the azimuth angle between emergence beam from star simulator and reflected beam of inertial measurement prism is required. The directions of two beams are opposite and there are some space translation in them. The systems require a space replication light-tube for the measurement of the parameter with one theodolite. A new method was proposed for the design of replication light-tube.the light-tube can make the light pace replicate 180 in the horizontal plane and have a two dimensional translation in the plane perpendicular to the optical axis of the star simulator. Right angle roof prism and rhombic prism were used in the design of the light-tube for the purpose to eliminate the installation error of the tube. A double wedges instrument was designed to improve the accuracy of the light-tube. With the use of double wedges, the light pace could title lightly, so the transfer deviation could be eliminated. Experimental results show that the design can not only meet the requirements of the optical path and guarantee delivery accuracy, but also reduce processing costs of the precise replicated light-tube.

     

/

返回文章
返回