Study on temperature dependence of the greenhouse gases and carbon isotope ratio spectral analysis
-
摘要: 为了研究温度变化对温室气体及碳同位素比值光谱定量分析的影响,首先从理论上分析得出温室气体浓度及13CO2值的定量反演主要取决于吸收系数,并研究了吸收系数的计算方法.其次结合HITRAN数据库,研究了温度对线强、展宽以及吸收系数的影响规律,结果表明:压强为1 atm(1 atm=1.013105 Pa)恒定条件下,温度变化时,吸收系数受线强变化的影响强于受展宽变化的影响.最后通过实验验证了温室气体和碳同位素比值傅里叶变换红外光谱(FTIR)反演的温度依赖关系,其中碳同位素比值受温度变化影响幅度最大,单位温度变化对13CO2值的影响为14.37.文中结果为高精度温室气体及碳同位素比值红外光谱监测装置中的温度监控系统设计提供了理论依据.Abstract: To study the influence of temperature change on the spectrum quantitative analysis of greenhouse gases and carbon isotope ratio,at first, the view that the quantitative analysis of greenhouse gases and 13CO2 value was mainly determined by the absorption coefficient was analyzed theoretically, and the calculation method of the absorption coefficient was also studied. Then referring to the HITRAN database, the temperature dependence of line intensity, FWHM and absorption coefficient were studied, the results show that the effect of line intensity is stronger than the FWHM on the absorption coefficient when the pressure is constant at 1 atm while the temperature changes. At last, the temperature dependence of greenhouse gases and carbon isotope ratio quantitative analysis based on Fourier transform infrared spectroscopy(FTIR) method was confirmed through a series of experiment, and these experiments also present that the variation of carbon isotope is more serious than the greenhouse gases variation when the temperature changes, the 13CO2 value will change 14.37 while the temperature changes 1 ℃. This study is the theoretical basis for the design of the temperature monitoring and controlling system of greenhouse gases and carbon isotope ration monitoring instrument based on FTIR with high-precision.
-
[1] [2] Yun Yuxin, Lv Tianguang, Han Hong, et al. Effects of pressure and temperature on gaseous infrared absorption properties[J]. Infrared and Laser Engineering, 2011, 40(5): 992-996. (in Chinese). 云玉新, 吕天光, 韩洪, 等. 气体红外吸收特性受压强与温度的影响分析[J]. 红外 与激光工程, 2011, 40(5): 992-996. [3] [4] Chen Zhou, Tao Shaohua, Du Xiangjun, et al. Accurate calculation of spectral line profiles by considering influence of varying pressure and temperature in a gas[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 312-315. (in Chinese). 陈舟, 陶少华, 杜翔军, 等. 温度和压强的变化对谱线线型峰值的影响[J]. 光谱学 与光谱分析, 2013, 33(2): 312-315. [5] D Griffith, A Manning, O Tarasova. 16th WMO/IAEA Meeting on carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques(GGMT- 2011)[C], 2011. [6] [7] David W T Griffith. Synthetic calibration and quantitative analysis of gas-phase FTIR spectra[J]. Applied Spectroscopy, 1996, 50(1): 59-70. [8] [9] Rothman L S, Jacquemart D, Barbe A, et al. The HITRAN 2004 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2005, 96(2): 139-204. [10] [11] [12] Zhang Hua, Shi Guangyu. A fast efficient Line-By-Line calculation method for atmospheric absorption[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(1): 111-121. (in Chinese) 张华, 石广玉. 一种快速高效的逐线积分大气吸收计算方法[J]. 大气科学, 2000, 24(1): 111-121. [13] Werner R A, Brand W A. Referencing strategies and techniques in stable isotope ratio analysis[J]. Rapid Communications in Mass Spectrometry, 2001, 15(7): 501-519. [14] [15] Li Cuina. The study on temperature dependence of the atmospheric gases absorption[D]. Nanjing: Nanjing University of Information Science Technology, 2008. 李翠娜. 大气气体吸收的温度依赖关系研究[D]. 南京: 南京信息工程大学, 2008. [16] [17] Griffiths W T. Synthetic calibration and quantitative analysis of gas-phase FTIR spectra[J]. Appl Spec, 1996, 50(1): 59-70. [18] [19] Li Xiangxian, Gao Minguang, Xu Liang, et al. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy[J]. Acta Physica Sinica, 2013, 62(3): 030202-1-030202-9. (in Chinese) 李相贤, 高闽光, 徐亮, 等. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研 究[J]. 物理学报, 2013, 62(3): 030202-1-030202-9. -

计量
- 文章访问数: 243
- HTML全文浏览量: 26
- PDF下载量: 231
- 被引次数: 0