留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气遥感高光谱分辨率激光雷达研究进展

刘东 杨甬英 周雨迪 黄寒璐 成中涛 罗敬 张与鹏 段绿林 沈亦兵 白剑 汪凯巍

刘东, 杨甬英, 周雨迪, 黄寒璐, 成中涛, 罗敬, 张与鹏, 段绿林, 沈亦兵, 白剑, 汪凯巍. 大气遥感高光谱分辨率激光雷达研究进展[J]. 红外与激光工程, 2015, 44(9): 2535-2546.
引用本文: 刘东, 杨甬英, 周雨迪, 黄寒璐, 成中涛, 罗敬, 张与鹏, 段绿林, 沈亦兵, 白剑, 汪凯巍. 大气遥感高光谱分辨率激光雷达研究进展[J]. 红外与激光工程, 2015, 44(9): 2535-2546.
Liu Dong, Yang Yongying, Zhou Yudi, Huang Hanlu, Cheng Zhongtao, Luo Jing, Zhang Yupeng, Duan Lvlin, Shen Yibing, Bai Jian, Wang Kaiwei. High spectral resolution lidar for atmosphere remote sensing: a review[J]. Infrared and Laser Engineering, 2015, 44(9): 2535-2546.
Citation: Liu Dong, Yang Yongying, Zhou Yudi, Huang Hanlu, Cheng Zhongtao, Luo Jing, Zhang Yupeng, Duan Lvlin, Shen Yibing, Bai Jian, Wang Kaiwei. High spectral resolution lidar for atmosphere remote sensing: a review[J]. Infrared and Laser Engineering, 2015, 44(9): 2535-2546.

大气遥感高光谱分辨率激光雷达研究进展

基金项目: 

国家自然科学基金(41305014);教育部博士点基金(20130101120133);中央高校基本科研业务费专项资金(2013QNA5006);浙江省教育厅科研项目(Y201329660);浙江省‘仪器科学与技术'重中之重学科开放基金(JL130113);现代光学仪器国家重点实验室创新基金(MOI201208);遥感科学国家重点实验室开放基金(OFSLRSS201412)

详细信息
    作者简介:

    刘东(1982-),男,副教授,博士生导师,博士,主要从事光学传感与信息处理技术方面的研究。Email:liudongopt@zju.edu.cn

  • 中图分类号: TN958.98

High spectral resolution lidar for atmosphere remote sensing: a review

  • 摘要: 高光谱分辨率激光雷达由于可实现对大气参数的精确反演,在大气遥感领域具有较好的发展前景。介绍了高光谱分辨率激光雷达探测气溶胶、大气温度以及风速的基本原理以及目前国内外的研究进展,并重点介绍了高光谱分辨率激光雷达系统中的鉴频技术、激光技术、锁频技术以及数据处理技术等几项关键技术。
  • [1] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S3): 21-27. (in Chinese) 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J].红外与激光工程, 2008, 37(S3): 21-27.
    [2]
    [3] Ji Chengli, Tao Zongming, Hu Shunxing, et al. Cirrus measurment using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 2014, 34(4): 0401001. 季承荔, 陶宗明, 胡顺星, 等. 三波长激光雷达探测合肥地区卷云特性[J]. 光学学报, 2014, 34(4): 0401001.
    [4]
    [5]
    [6] Eloranta E E. High spectral resolution lidar[M]. Springer New York, 2005.
    [7] Ansmann A, Muller D. Lidar and Atmospheric Aerosol Particles[M]. New York: Springer, 2005.
    [8]
    [9]
    [10] Collis R T H, Russell P B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption[M]. Berlin Heidelberg: Springer, 1976: 71-151.
    [11] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.
    [12]
    [13]
    [14] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653.
    [15]
    [16] Ansmann A, Riebesell M, Weitkamp C. Measurement of atmosphere aerosol extinction profiles with a Raman lidar[J]. Optics Letters, 1990, 15(13): 746-748.
    [17] Fiocco G, Benedetti-Michelangeli G, Maischberger K, et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J]. Nature, 1971, 229(3): 78-79.
    [18]
    [19]
    [20] Zhu Jinsham, Liu Zhisheng, Guo Jinjia. A simulation of a high spectral resolution lidar system for atmosphere temperature measurement[J]. Journal of Ocean University of Qingdao, 2005, 35(5): 863-867. (in Chinese) 朱金山, 刘智深, 郭金家. 高光谱分辨率激光雷达(HSRL)大气温度测量模拟[J]. 中国海洋大学学报(自然科学版), 2005, 35(5): 863-867.
    [21] Stanford M C W. Laser scatter measurements in the mesosphere and above[J]. Atmos H Terr Phys, 1967, 29(12): 1657-1662.
    [22]
    [23] Hauchecorne A, Chanin M. Density and temperature profiles obtained by lidar between 35 and 70 km[J]. Geophys Res Lett, 1980, 7(8): 565-568.
    [24]
    [25]
    [26] Kopp F, Schwiesow R L, Werner C H. Remote measurements of boundary-layer wind profiles using a CW doppler lidar[J]. J Appl Meteorol, 1984, 23(1): 148-154.
    [27] Post M J, Richter R A, Hardesty R M, et al. National Oceanic and Atmospheric Administration's (NOAA) pulsed, coherent, infrared Doppler LIDAR-characteristics and data[C]//25th Annual Technical Symposium. International Society for Optics and Photonics, 1982: 60-65.
    [28]
    [29]
    [30] Kane T J, Kozlovsky W J, Byer R L, et al. Coherent laser radar at 1.06 m using Nd:YAG lasers[J]. Optics Letters, 1987, 12: 239-241.
    [31]
    [32] Abreu V J. Wind measurement from an orbital platform using a lidar system with incoherent detection: an analysis[J]. Applied Optics, 1979, 18(17): 2992-2997.
    [33] Souprayen C, Garnier A, Hertzog A, et al. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumenal setup, validation, and first climatological results[J]. Applied Optics, 1999, 38(12): 2410-2421.
    [34]
    [35] Flesia C, Korb C L. Theory of the double-dege molecular technique for Doppler lidar wind measurement[J]. Applied Optics, 1999, 38(3): 432-440.
    [36]
    [37] Liu Zh Sh, Chen W B, Zhang T L, et al. An incoherent Doppler lidar for ground-based atmospheric wind profiling[J]. Applied Physics B Lasers Optics, 1997, 64(5): 561-566.
    [38]
    [39] Korb C L, Gentry B M, Weng C Y. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Applied Optics, 1992, 31(21): 4202-4213.
    [40]
    [41] She C Y, Yue J, Yan Z A, et al.. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods[J]. Applied Optics, 2007, 46(20): 4444-4454.
    [42]
    [43] She C Y, YueJ, Yan Z A, et al. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: a comparison between iodine vapor filter and Fabry-Perot interferometer methods[J]. Applied Optics, 2007, 46(20): 4434-4443.
    [44]
    [45]
    [46] Xia H Y, SunD S, Yang Y H, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.
    [47] Cheng Zhongtao, Liu Dong, Luo Jing, et al. Influences analysis of the spectral filter transmissions on the performance of high-spectral-resolution lidar[J]. Acta Optica Sinica, 2014, 34(8): 0801003. (in Chinese) 成中涛, 刘东, 罗敬, 等. 光谱滤光器透过率参数对高光谱分辨率激光雷达反演大气气溶胶光学属性精度的影响研究[J]. 光学学报, 2014, 34(8): 0801003.
    [48]
    [49] Shipley S T, Tracy D H, Eloranta E W, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation[J]. Applied Optics, 1983, 22(23): 3716-3724.
    [50]
    [51] Sroga J T, Eloranta E W, Shipley S T, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis[J]. Applied Optics, 1983, 22(23): 3725-3732.
    [52]
    [53]
    [54] Hua D, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10): 1063-1065.
    [55]
    [56] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 2005, 44(28): 6023-6030.
    [57]
    [58] Hoffman D S, Repasky K S, Reagan J A, et al. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters[J]. Applied Optics, 2012, 51(25): 6233-6244.
    [59]
    [60] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19(3): 234-236.
    [61]
    [62] Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J]. Applied Optics, 1983, 22(9): 1373-1381.
    [63] She C Y, Alvarez R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7): 541-543.
    [64]
    [65]
    [66] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10): 1661-1670.
    [67] Hair J W, Caldwell L M, Krueger D A, et al. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles[J]. Applied Optics, 2001, 40(30): 5280-5294.
    [68]
    [69]
    [70] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.
    [71] Liu ZH SH, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with iodine filter[J]. Applied Optics, 2002. 41(33): 7079-7086.
    [72]
    [73] Liu Zh Sh, Bi D C, Song X Q, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18): 2712-2714.
    [74]
    [75] Shepherd G G. Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond[J]. Applied Optics, 1996, 35(16): 2764-2773.
    [76]
    [77]
    [78] Gao H Y, Tang Y H, Hua D X, et al. Ground-based airglow imaging interferometer. Part 1: instrument and observation[J]. Applied Optics, 2013, 52(36): 8650-8660.
    [79]
    [80] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406-1420.
    [81]
    [82] Liu D, Yang Y Y, Cheng ZH T, et al. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties[J]. Optics Express, 2013, 21(11): 13084-13093.
    [83]
    [84] Huang Hanlu, Liu Dong, Yang Yongying, et al. Design of a field-widened Michelson interferometer for a high spectral resolution lidar[J]. Chinese Journal of Lasers, 2014, 41(9): 0913003. (in Chinese) 黄寒璐, 刘东, 杨甬英, 等. 基于视场展宽迈克尔逊干涉仪的高光谱分辨率激光雷达滤光器设计研究[J]. 中国激光, 2014, 41(9): 0913003.
    [85] Cheng Zh T, Liu D, Yang Y Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32): 7838-7850.
    [86]
    [87]
    [88] Liu D, Yang Y Y, Cheng Zh T, et al. Development of the ZJU polarized near-infrared high spectral resolution lidar[C]//ISPDI 2013-Fifth International Symposium on Photoelectronic Detection and Imaging. International Society for Optics and Photonics, 2013, 8905: 89052W.
    [89] Wu Songhua. Key technologies of high spectral resolution wind measurement by laser with high stability[D]. Qingdao: Ocean University of China, 2004. (in Chinese) 吴松华. 高稳定性高光谱分辨率激光测风系统关键技术[D]. 青岛: 中国海洋大学, 2004.
    [90]
    [91] Grund C J, Eloranta E W. University of Wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(1): 6-12.
    [92]
    [93] Wang Tao. The mechanism and technology of the injection seeded, Q-switched laser system[D]. Xi'an: Chinese Academy of Sciences, Xi'an Institute of Optical Precision Machinery, 2001. (in Chinese) 王涛. 种子注入电光调Q激光器系统机理与技术研究[D].西安: 中国科学院西安光学精密机械研究所, 2001.
    [94]
    [95] Hovis F E, Rhoades M, Bumnham R L, et al. Single-frequency lasers for remote sensing[C]//Lasers and Applications in Science and Engineering. International Society for Optics and Photonics, 2004: 263-270.
    [96]
    [97]
    [98] Fry E S, Hu Q, Li X. Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments[J]. Applied Optics, 1991, 30(9): 1015-1017.
    [99] Henderson S W, Yuen E H, Fry E S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers[J]. Optics Letters, 1986, 11(11): 715-717.
    [100]
    [101] Zhou J, Yu T, Bi J Z, et al. Diode Pumped Injection seeded Nd:YAG laser[J]. Chinese Optics Letters, 2006, 4(5): 292-293.
    [102]
    [103]
    [104] Liu Dong, Yang Yongying, Cheng Zhongtao. A device and method of resonant frequency locking for Michelson interferometeric spectral filter, Chinese Patent: 2014100252869[P]. 2014-05-21. (in Chinese) 刘东, 杨甬英, 成中涛. 一种迈克尔逊干涉型光谱滤波器谐振频率锁定装置及方法,中国专利: 2014100252869[P]. 2014-05-21.
    [105] Liu B Y, Esselborn M, Wirth M, et al. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar[J]. Applied Optics, 2009, 48(27): 5143-5154.
  • [1] 刘壮, 王超, 江伦, 史浩东.  低空高分辨率激光雷达光学系统设计 . 红外与激光工程, 2021, 50(1): 20200117-1-20200117-7. doi: 10.3788/IRLA20200117
    [2] 刘永峰, 王年, 王峰, 李从利, 刘晓, 徐国明.  基于谱间相似性的高光谱图像稀疏超分辨率算法 . 红外与激光工程, 2019, 48(S1): 181-192. doi: 10.3788/IRLA201948.S128003
    [3] 董俊发, 刘继桥, 朱小磊, 毕德仓, 竹孝鹏, 陈卫标.  星载高光谱分辨率激光雷达的高光谱探测分光比优化分析 . 红外与激光工程, 2019, 48(S2): 1-6. doi: 10.3788/IRLA201948.S205001
    [4] 邵欣.  利用波长调制光谱的燃烧场温度原位测量 . 红外与激光工程, 2019, 48(7): 717001-0717001(6). doi: 10.3788/IRLA201948.0717001
    [5] 吴谨, 赵志龙, 白涛, 李明磊, 李丹阳, 万磊, 唐永新, 刁伟伦.  差分合成孔径激光雷达高分辨率成像实验 . 红外与激光工程, 2018, 47(12): 1230003-1230003(7). doi: 10.3788/IRLA201847.1230003
    [6] 李帅, 徐抒岩, 刘栋斌, 张航.  高信噪比云与气溶胶探测仪成像系统设计 . 红外与激光工程, 2018, 47(11): 1111006-1111006(8). doi: 10.3788/IRLA201847.1111006
    [7] 余骁, 闵敏, 张兴赢, 孟晓阳, 邓小波.  典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响 . 红外与激光工程, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008
    [8] 杨辉, 赵雪松, 孙彦飞, 王铁栋, 叶结松.  荧光偏振短距激光雷达测量生物战剂/气溶胶 . 红外与激光工程, 2017, 46(10): 1030004-1030004(8). doi: 10.3788/IRLA201767.1030004
    [9] 刘秉义, 庄全风, 秦胜光, 吴松华, 刘金涛.  基于高光谱分辨率激光雷达的气溶胶分类方法研究 . 红外与激光工程, 2017, 46(4): 411001-0411001(13). doi: 10.3788/IRLA201746.0411001
    [10] 唐禹, 秦宝, 晏芸, 汪路锋, 邢孟道.  多发多收合成孔径激光雷达高分辨率宽测绘带成像 . 红外与激光工程, 2016, 45(8): 830001-0830001(8). doi: 10.3788/IRLA201645.0830001
    [11] 赵明, 谢晨波, 钟志庆, 王邦新, 王珍珠, 尚震, 谭敏, 刘东, 王英俭.  高光谱分辨率激光雷达探测大气透过率 . 红外与激光工程, 2016, 45(S1): 76-80. doi: 10.3788/IRLA201645.S130002
    [12] 王强, 张勇, 郝利丽, 靳辰飞, 杨旭, 徐璐, 杨成华, 赵远.  基于奇相干叠加态的超分辨率量子激光雷达 . 红外与激光工程, 2015, 44(9): 2569-2574.
    [13] 王文博, 王英瑞.  红外双波段点目标双色比分析与处理 . 红外与激光工程, 2015, 44(8): 2347-2350.
    [14] 吴谨, 李斐斐, 赵志龙, 杨兆省, 王东蕾, 唐永新, 苏园园, 梁娜.  条带模式合成孔径激光雷达不依赖PGA的高分辨率成像演示 . 红外与激光工程, 2014, 43(11): 3559-3564.
    [15] 赵培娥, 罗雄, 曹文勇, 赵彬, 冯立天, 李晓锋, 谭锦, 周鼎富.  应用Zoom FFT方法提高相干测风激光雷达频谱分辨率 . 红外与激光工程, 2014, 43(1): 98-102.
    [16] 潘雪涛, 高晓俭, 谷牧, 孟飞, 蔡建文.  接触线几何参数CCD交汇测量分辨率及精度分析 . 红外与激光工程, 2014, 43(11): 3627-3632.
    [17] 刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明.  基于光声光谱技术的大气气溶胶吸收系数测量 . 红外与激光工程, 2014, 43(9): 3010-3014.
    [18] 高明辉, 郑玉权, 郭万存.  高光谱与高分辨率CO2探测仪安装座结构设计 . 红外与激光工程, 2014, 43(12): 3973-3976.
    [19] 宋俊玲, 洪延姬, 王广宇, 潘虎.  基于激光吸收光谱技术的超声速气流参数测量 . 红外与激光工程, 2014, 43(11): 3510-3515.
    [20] 王广宇, 洪延姬, 潘虎, 宋俊玲.  可调谐半导体激光吸收传感器的温度测量验证 . 红外与激光工程, 2013, 42(9): 2358-2363.
  • 加载中
计量
  • 文章访问数:  297
  • HTML全文浏览量:  36
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-05
  • 修回日期:  2015-09-22
  • 刊出日期:  2015-09-25

大气遥感高光谱分辨率激光雷达研究进展

    作者简介:

    刘东(1982-),男,副教授,博士生导师,博士,主要从事光学传感与信息处理技术方面的研究。Email:liudongopt@zju.edu.cn

基金项目:

国家自然科学基金(41305014);教育部博士点基金(20130101120133);中央高校基本科研业务费专项资金(2013QNA5006);浙江省教育厅科研项目(Y201329660);浙江省‘仪器科学与技术'重中之重学科开放基金(JL130113);现代光学仪器国家重点实验室创新基金(MOI201208);遥感科学国家重点实验室开放基金(OFSLRSS201412)

  • 中图分类号: TN958.98

摘要: 高光谱分辨率激光雷达由于可实现对大气参数的精确反演,在大气遥感领域具有较好的发展前景。介绍了高光谱分辨率激光雷达探测气溶胶、大气温度以及风速的基本原理以及目前国内外的研究进展,并重点介绍了高光谱分辨率激光雷达系统中的鉴频技术、激光技术、锁频技术以及数据处理技术等几项关键技术。

English Abstract

参考文献 (105)

目录

    /

    返回文章
    返回